問題を入力...
微分積分 例
ステップ 1
ステップ 1.1
一次導関数を求めます。
ステップ 1.1.1
微分します。
ステップ 1.1.1.1
総和則では、のに関する積分はです。
ステップ 1.1.1.2
のとき、はであるというべき乗則を使って微分します。
ステップ 1.1.2
の値を求めます。
ステップ 1.1.2.1
はに対して定数なので、に対するの微分係数はです。
ステップ 1.1.2.2
のとき、はであるというべき乗則を使って微分します。
ステップ 1.1.2.3
にをかけます。
ステップ 1.1.3
定数の規則を使って微分します。
ステップ 1.1.3.1
はについて定数なので、についての微分係数はです。
ステップ 1.1.3.2
とをたし算します。
ステップ 1.2
二次導関数を求めます。
ステップ 1.2.1
総和則では、のに関する積分はです。
ステップ 1.2.2
の値を求めます。
ステップ 1.2.2.1
はに対して定数なので、に対するの微分係数はです。
ステップ 1.2.2.2
のとき、はであるというべき乗則を使って微分します。
ステップ 1.2.2.3
にをかけます。
ステップ 1.2.3
の値を求めます。
ステップ 1.2.3.1
はに対して定数なので、に対するの微分係数はです。
ステップ 1.2.3.2
のとき、はであるというべき乗則を使って微分します。
ステップ 1.2.3.3
にをかけます。
ステップ 1.3
に関するの二次導関数はです。
ステップ 2
ステップ 2.1
二次導関数をに等しくします。
ステップ 2.2
をで因数分解します。
ステップ 2.2.1
をで因数分解します。
ステップ 2.2.2
をで因数分解します。
ステップ 2.2.3
をで因数分解します。
ステップ 2.3
方程式の左辺の個々の因数がと等しいならば、式全体はと等しくなります。
ステップ 2.4
がに等しいとします。
ステップ 2.5
をに等しくし、を解きます。
ステップ 2.5.1
がに等しいとします。
ステップ 2.5.2
についてを解きます。
ステップ 2.5.2.1
方程式の両辺にを足します。
ステップ 2.5.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
ステップ 2.5.2.3
完全解は、解の正と負の部分の両方の計算結果です。
ステップ 2.5.2.3.1
まず、の正の数を利用し、1番目の解を求めます。
ステップ 2.5.2.3.2
次に、の負の値を利用し。2番目の解を求めます。
ステップ 2.5.2.3.3
完全解は、解の正と負の部分の両方の計算結果です。
ステップ 2.6
最終解はを真にするすべての値です。
ステップ 3
ステップ 3.1
をに代入し、の値を求めます。
ステップ 3.1.1
式の変数をで置換えます。
ステップ 3.1.2
結果を簡約します。
ステップ 3.1.2.1
各項を簡約します。
ステップ 3.1.2.1.1
を正数乗し、を得ます。
ステップ 3.1.2.1.2
を正数乗し、を得ます。
ステップ 3.1.2.1.3
にをかけます。
ステップ 3.1.2.2
足し算と引き算で簡約します。
ステップ 3.1.2.2.1
とをたし算します。
ステップ 3.1.2.2.2
からを引きます。
ステップ 3.1.2.3
最終的な答えはです。
ステップ 3.2
で代入して求めた点は、です。この点は変曲点となり得ます。
ステップ 3.3
をに代入し、の値を求めます。
ステップ 3.3.1
式の変数をで置換えます。
ステップ 3.3.2
結果を簡約します。
ステップ 3.3.2.1
各項を簡約します。
ステップ 3.3.2.1.1
をに書き換えます。
ステップ 3.3.2.1.2
を乗します。
ステップ 3.3.2.1.3
をに書き換えます。
ステップ 3.3.2.1.3.1
をで因数分解します。
ステップ 3.3.2.1.3.2
をに書き換えます。
ステップ 3.3.2.1.4
累乗根の下から項を取り出します。
ステップ 3.3.2.1.5
をに書き換えます。
ステップ 3.3.2.1.6
を乗します。
ステップ 3.3.2.1.7
をに書き換えます。
ステップ 3.3.2.1.7.1
をで因数分解します。
ステップ 3.3.2.1.7.2
をに書き換えます。
ステップ 3.3.2.1.8
累乗根の下から項を取り出します。
ステップ 3.3.2.1.9
にをかけます。
ステップ 3.3.2.2
からを引きます。
ステップ 3.3.2.3
最終的な答えはです。
ステップ 3.4
で代入して求めた点は、です。この点は変曲点となり得ます。
ステップ 3.5
をに代入し、の値を求めます。
ステップ 3.5.1
式の変数をで置換えます。
ステップ 3.5.2
結果を簡約します。
ステップ 3.5.2.1
各項を簡約します。
ステップ 3.5.2.1.1
積の法則をに当てはめます。
ステップ 3.5.2.1.2
を乗します。
ステップ 3.5.2.1.3
をに書き換えます。
ステップ 3.5.2.1.4
を乗します。
ステップ 3.5.2.1.5
をに書き換えます。
ステップ 3.5.2.1.5.1
をで因数分解します。
ステップ 3.5.2.1.5.2
をに書き換えます。
ステップ 3.5.2.1.6
累乗根の下から項を取り出します。
ステップ 3.5.2.1.7
にをかけます。
ステップ 3.5.2.1.8
積の法則をに当てはめます。
ステップ 3.5.2.1.9
を乗します。
ステップ 3.5.2.1.10
をに書き換えます。
ステップ 3.5.2.1.11
を乗します。
ステップ 3.5.2.1.12
をに書き換えます。
ステップ 3.5.2.1.12.1
をで因数分解します。
ステップ 3.5.2.1.12.2
をに書き換えます。
ステップ 3.5.2.1.13
累乗根の下から項を取り出します。
ステップ 3.5.2.1.14
にをかけます。
ステップ 3.5.2.1.15
にをかけます。
ステップ 3.5.2.2
とをたし算します。
ステップ 3.5.2.3
最終的な答えはです。
ステップ 3.6
で代入して求めた点は、です。この点は変曲点となり得ます。
ステップ 3.7
変曲点になりうる点を判定します。
ステップ 4
変曲点となりうる点の周囲でを区間に分割します。
ステップ 5
ステップ 5.1
式の変数をで置換えます。
ステップ 5.2
結果を簡約します。
ステップ 5.2.1
各項を簡約します。
ステップ 5.2.1.1
を乗します。
ステップ 5.2.1.2
にをかけます。
ステップ 5.2.1.3
にをかけます。
ステップ 5.2.2
とをたし算します。
ステップ 5.2.3
最終的な答えはです。
ステップ 5.3
で二次導関数はです。これは負の値なので、の区間で減少します。
なのでで減少
なのでで減少
ステップ 6
ステップ 6.1
式の変数をで置換えます。
ステップ 6.2
結果を簡約します。
ステップ 6.2.1
各項を簡約します。
ステップ 6.2.1.1
を乗します。
ステップ 6.2.1.2
にをかけます。
ステップ 6.2.1.3
にをかけます。
ステップ 6.2.2
とをたし算します。
ステップ 6.2.3
最終的な答えはです。
ステップ 6.3
で二次導関数はです。これは正の値なので、の区間で増加します。
なのでで増加
なのでで増加
ステップ 7
ステップ 7.1
式の変数をで置換えます。
ステップ 7.2
結果を簡約します。
ステップ 7.2.1
各項を簡約します。
ステップ 7.2.1.1
を乗します。
ステップ 7.2.1.2
にをかけます。
ステップ 7.2.1.3
にをかけます。
ステップ 7.2.2
からを引きます。
ステップ 7.2.3
最終的な答えはです。
ステップ 7.3
で二次導関数はです。これは負の値なので、の区間で減少します。
なのでで減少
なのでで減少
ステップ 8
ステップ 8.1
式の変数をで置換えます。
ステップ 8.2
結果を簡約します。
ステップ 8.2.1
各項を簡約します。
ステップ 8.2.1.1
を乗します。
ステップ 8.2.1.2
にをかけます。
ステップ 8.2.1.3
にをかけます。
ステップ 8.2.2
からを引きます。
ステップ 8.2.3
最終的な答えはです。
ステップ 8.3
で二次導関数はです。これは正の値なので、の区間で増加します。
なのでで増加
なのでで増加
ステップ 9
An inflection point is a point on a curve at which the concavity changes sign from plus to minus or from minus to plus. The inflection points in this case are .
ステップ 10