問題を入力...
微分積分 例
ステップ 1
を関数で書きます。
ステップ 2
ステップ 2.1
のとき、はであるというべき乗則を使って微分します。
ステップ 2.2
二次導関数を求めます。
ステップ 2.2.1
はに対して定数なので、に対するの微分係数はです。
ステップ 2.2.2
のとき、はであるというべき乗則を使って微分します。
ステップ 2.2.3
にをかけます。
ステップ 2.3
に関するの二次導関数はです。
ステップ 3
ステップ 3.1
二次導関数をに等しくします。
ステップ 3.2
の各項をで割り、簡約します。
ステップ 3.2.1
の各項をで割ります。
ステップ 3.2.2
左辺を簡約します。
ステップ 3.2.2.1
の共通因数を約分します。
ステップ 3.2.2.1.1
共通因数を約分します。
ステップ 3.2.2.1.2
をで割ります。
ステップ 3.2.3
右辺を簡約します。
ステップ 3.2.3.1
をで割ります。
ステップ 4
ステップ 4.1
をに代入し、の値を求めます。
ステップ 4.1.1
式の変数をで置換えます。
ステップ 4.1.2
結果を簡約します。
ステップ 4.1.2.1
を正数乗し、を得ます。
ステップ 4.1.2.2
最終的な答えはです。
ステップ 4.2
で代入して求めた点は、です。この点は変曲点となり得ます。
ステップ 5
変曲点となりうる点の周囲でを区間に分割します。
ステップ 6
ステップ 6.1
式の変数をで置換えます。
ステップ 6.2
結果を簡約します。
ステップ 6.2.1
にをかけます。
ステップ 6.2.2
最終的な答えはです。
ステップ 6.3
で二次導関数はです。これは負の値なので、の区間で減少します。
なのでで減少
なのでで減少
ステップ 7
ステップ 7.1
式の変数をで置換えます。
ステップ 7.2
結果を簡約します。
ステップ 7.2.1
にをかけます。
ステップ 7.2.2
最終的な答えはです。
ステップ 7.3
で二次導関数はです。これは正の値なので、の区間で増加します。
なのでで増加
なのでで増加
ステップ 8
変曲点は、凹面の符号がプラスからマイナス、またはマイナスからプラスに変わる曲線上の点です。このときの変曲点はです。
ステップ 9