問題を入力...
微分積分 例
ステップ 1
ステップ 1.1
一次導関数を求めます。
ステップ 1.1.1
総和則では、のに関する積分はです。
ステップ 1.1.2
の値を求めます。
ステップ 1.1.2.1
はに対して定数なので、に対するの微分係数はです。
ステップ 1.1.2.2
のとき、はであるというべき乗則を使って微分します。
ステップ 1.1.2.3
とをまとめます。
ステップ 1.1.2.4
とをまとめます。
ステップ 1.1.3
の値を求めます。
ステップ 1.1.3.1
はに対して定数なので、に対するの微分係数はです。
ステップ 1.1.3.2
のとき、はであるというべき乗則を使って微分します。
ステップ 1.1.3.3
にをかけます。
ステップ 1.2
に関するの一次導関数はです。
ステップ 2
ステップ 2.1
一次導関数をに等しくします。
ステップ 2.2
方程式の両辺にを足します。
ステップ 2.3
方程式の両辺にを掛けます。
ステップ 2.4
方程式の両辺を簡約します。
ステップ 2.4.1
左辺を簡約します。
ステップ 2.4.1.1
を簡約します。
ステップ 2.4.1.1.1
まとめる。
ステップ 2.4.1.1.2
の共通因数を約分します。
ステップ 2.4.1.1.2.1
共通因数を約分します。
ステップ 2.4.1.1.2.2
式を書き換えます。
ステップ 2.4.1.1.3
の共通因数を約分します。
ステップ 2.4.1.1.3.1
共通因数を約分します。
ステップ 2.4.1.1.3.2
をで割ります。
ステップ 2.4.2
右辺を簡約します。
ステップ 2.4.2.1
の共通因数を約分します。
ステップ 2.4.2.1.1
共通因数を約分します。
ステップ 2.4.2.1.2
式を書き換えます。
ステップ 2.5
方程式の両辺の指定した根をとり、左辺の指数を消去します。
ステップ 2.6
を簡約します。
ステップ 2.6.1
をに書き換えます。
ステップ 2.6.2
正の実数と仮定して、累乗根の下から項を取り出します。
ステップ 2.7
完全解は、解の正と負の部分の両方の計算結果です。
ステップ 2.7.1
まず、の正の数を利用し、1番目の解を求めます。
ステップ 2.7.2
次に、の負の値を利用し。2番目の解を求めます。
ステップ 2.7.3
完全解は、解の正と負の部分の両方の計算結果です。
ステップ 3
ステップ 3.1
式の定義域は、式が未定義の場合を除き、すべての実数です。この場合、式が未定義になるような実数はありません。
ステップ 4
ステップ 4.1
での値を求めます。
ステップ 4.1.1
をに代入します。
ステップ 4.1.2
簡約します。
ステップ 4.1.2.1
各項を簡約します。
ステップ 4.1.2.1.1
を乗します。
ステップ 4.1.2.1.2
をで割ります。
ステップ 4.1.2.1.3
にをかけます。
ステップ 4.1.2.2
からを引きます。
ステップ 4.2
での値を求めます。
ステップ 4.2.1
をに代入します。
ステップ 4.2.2
簡約します。
ステップ 4.2.2.1
各項を簡約します。
ステップ 4.2.2.1.1
を乗します。
ステップ 4.2.2.1.2
をで割ります。
ステップ 4.2.2.1.3
にをかけます。
ステップ 4.2.2.2
とをたし算します。
ステップ 4.3
点のすべてを一覧にします。
ステップ 5