微分積分 例

導関数を用いて増減する場所を求める f(x)=(x^3)/(x^2-4)
ステップ 1
一次導関数を求めます。
タップして手順をさらに表示してください…
ステップ 1.1
一次導関数を求めます。
タップして手順をさらに表示してください…
ステップ 1.1.1
およびのとき、であるという商の法則を使って微分します。
ステップ 1.1.2
微分します。
タップして手順をさらに表示してください…
ステップ 1.1.2.1
のとき、であるというべき乗則を使って微分します。
ステップ 1.1.2.2
の左に移動させます。
ステップ 1.1.2.3
総和則では、に関する積分はです。
ステップ 1.1.2.4
のとき、であるというべき乗則を使って微分します。
ステップ 1.1.2.5
について定数なので、についての微分係数はです。
ステップ 1.1.2.6
式を簡約します。
タップして手順をさらに表示してください…
ステップ 1.1.2.6.1
をたし算します。
ステップ 1.1.2.6.2
をかけます。
ステップ 1.1.3
乗します。
ステップ 1.1.4
べき乗則を利用して指数を組み合わせます。
ステップ 1.1.5
をたし算します。
ステップ 1.1.6
簡約します。
タップして手順をさらに表示してください…
ステップ 1.1.6.1
分配則を当てはめます。
ステップ 1.1.6.2
分配則を当てはめます。
ステップ 1.1.6.3
分子を簡約します。
タップして手順をさらに表示してください…
ステップ 1.1.6.3.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 1.1.6.3.1.1
指数を足してを掛けます。
タップして手順をさらに表示してください…
ステップ 1.1.6.3.1.1.1
を移動させます。
ステップ 1.1.6.3.1.1.2
べき乗則を利用して指数を組み合わせます。
ステップ 1.1.6.3.1.1.3
をたし算します。
ステップ 1.1.6.3.1.2
をかけます。
ステップ 1.1.6.3.2
からを引きます。
ステップ 1.1.6.4
で因数分解します。
タップして手順をさらに表示してください…
ステップ 1.1.6.4.1
で因数分解します。
ステップ 1.1.6.4.2
で因数分解します。
ステップ 1.1.6.4.3
で因数分解します。
ステップ 1.1.6.5
分母を簡約します。
タップして手順をさらに表示してください…
ステップ 1.1.6.5.1
に書き換えます。
ステップ 1.1.6.5.2
両項とも完全平方なので、平方の差の公式を利用して、因数分解します。このとき、であり、です。
ステップ 1.1.6.5.3
積の法則をに当てはめます。
ステップ 1.2
に関するの一次導関数はです。
ステップ 2
一次導関数をと等しくし、次に方程式を解きます。
タップして手順をさらに表示してください…
ステップ 2.1
一次導関数をに等しくします。
ステップ 2.2
分子を0に等しくします。
ステップ 2.3
について方程式を解きます。
タップして手順をさらに表示してください…
ステップ 2.3.1
方程式の左辺の個々の因数がと等しいならば、式全体はと等しくなります。
ステップ 2.3.2
に等しくし、を解きます。
タップして手順をさらに表示してください…
ステップ 2.3.2.1
に等しいとします。
ステップ 2.3.2.2
についてを解きます。
タップして手順をさらに表示してください…
ステップ 2.3.2.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
ステップ 2.3.2.2.2
を簡約します。
タップして手順をさらに表示してください…
ステップ 2.3.2.2.2.1
に書き換えます。
ステップ 2.3.2.2.2.2
正の実数と仮定して、累乗根の下から項を取り出します。
ステップ 2.3.2.2.2.3
プラスマイナスです。
ステップ 2.3.3
に等しくし、を解きます。
タップして手順をさらに表示してください…
ステップ 2.3.3.1
に等しいとします。
ステップ 2.3.3.2
についてを解きます。
タップして手順をさらに表示してください…
ステップ 2.3.3.2.1
方程式の両辺にを足します。
ステップ 2.3.3.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
ステップ 2.3.3.2.3
を簡約します。
タップして手順をさらに表示してください…
ステップ 2.3.3.2.3.1
に書き換えます。
タップして手順をさらに表示してください…
ステップ 2.3.3.2.3.1.1
で因数分解します。
ステップ 2.3.3.2.3.1.2
に書き換えます。
ステップ 2.3.3.2.3.2
累乗根の下から項を取り出します。
ステップ 2.3.3.2.4
完全解は、解の正と負の部分の両方の計算結果です。
タップして手順をさらに表示してください…
ステップ 2.3.3.2.4.1
まず、の正の数を利用し、1番目の解を求めます。
ステップ 2.3.3.2.4.2
次に、の負の値を利用し。2番目の解を求めます。
ステップ 2.3.3.2.4.3
完全解は、解の正と負の部分の両方の計算結果です。
ステップ 2.3.4
最終解はを真にするすべての値です。
ステップ 3
微分係数がに等しくなるような値はです。
ステップ 4
微分係数が未定義になる場所を求めます。
タップして手順をさらに表示してください…
ステップ 4.1
の分母をに等しいとして、式が未定義である場所を求めます。
ステップ 4.2
について解きます。
タップして手順をさらに表示してください…
ステップ 4.2.1
方程式の左辺の個々の因数がと等しいならば、式全体はと等しくなります。
ステップ 4.2.2
に等しくし、を解きます。
タップして手順をさらに表示してください…
ステップ 4.2.2.1
に等しいとします。
ステップ 4.2.2.2
についてを解きます。
タップして手順をさらに表示してください…
ステップ 4.2.2.2.1
に等しいとします。
ステップ 4.2.2.2.2
方程式の両辺からを引きます。
ステップ 4.2.3
に等しくし、を解きます。
タップして手順をさらに表示してください…
ステップ 4.2.3.1
に等しいとします。
ステップ 4.2.3.2
についてを解きます。
タップして手順をさらに表示してください…
ステップ 4.2.3.2.1
に等しいとします。
ステップ 4.2.3.2.2
方程式の両辺にを足します。
ステップ 4.2.4
最終解はを真にするすべての値です。
ステップ 4.3
分母がに等しい、平方根の引数がより小さい、または対数の引数が以下の場合、方程式は未定義です。
ステップ 5
微分係数または未定義になる値の周囲で、を分離区間に分割します。
ステップ 6
区間から値を微分係数に代入し、関数が増加関数か減少関数か判定します。
タップして手順をさらに表示してください…
ステップ 6.1
式の変数で置換えます。
ステップ 6.2
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 6.2.1
分子を簡約します。
タップして手順をさらに表示してください…
ステップ 6.2.1.1
乗します。
ステップ 6.2.1.2
からを引きます。
ステップ 6.2.1.3
乗します。
ステップ 6.2.2
分母を簡約します。
タップして手順をさらに表示してください…
ステップ 6.2.2.1
をたし算します。
ステップ 6.2.2.2
からを引きます。
ステップ 6.2.2.3
乗します。
ステップ 6.2.2.4
乗します。
ステップ 6.2.3
式を簡約します。
タップして手順をさらに表示してください…
ステップ 6.2.3.1
をかけます。
ステップ 6.2.3.2
をかけます。
ステップ 6.2.3.3
で割ります。
ステップ 6.2.4
最終的な答えはです。
ステップ 6.3
で微分係数はです。これは正の値なので、関数はで増加します。
なのでで増加
なのでで増加
ステップ 7
区間から値を微分係数に代入し、関数が増加関数か減少関数か判定します。
タップして手順をさらに表示してください…
ステップ 7.1
式の変数で置換えます。
ステップ 7.2
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 7.2.1
分子を簡約します。
タップして手順をさらに表示してください…
ステップ 7.2.1.1
乗します。
ステップ 7.2.1.2
からを引きます。
ステップ 7.2.1.3
乗します。
ステップ 7.2.2
分母を簡約します。
タップして手順をさらに表示してください…
ステップ 7.2.2.1
をたし算します。
ステップ 7.2.2.2
からを引きます。
ステップ 7.2.2.3
乗します。
ステップ 7.2.2.4
乗します。
ステップ 7.2.3
式を簡約します。
タップして手順をさらに表示してください…
ステップ 7.2.3.1
をかけます。
ステップ 7.2.3.2
をかけます。
ステップ 7.2.3.3
で割ります。
ステップ 7.2.4
最終的な答えはです。
ステップ 7.3
で微分係数はです。これは負の値なので、関数はで減少します。
なのでで減少
なのでで減少
ステップ 8
区間から値を微分係数に代入し、関数が増加関数か減少関数か判定します。
タップして手順をさらに表示してください…
ステップ 8.1
式の変数で置換えます。
ステップ 8.2
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 8.2.1
分子を簡約します。
タップして手順をさらに表示してください…
ステップ 8.2.1.1
乗します。
ステップ 8.2.1.2
からを引きます。
ステップ 8.2.1.3
乗します。
ステップ 8.2.1.4
をかけます。
ステップ 8.2.2
分母を簡約します。
タップして手順をさらに表示してください…
ステップ 8.2.2.1
をたし算します。
ステップ 8.2.2.2
からを引きます。
ステップ 8.2.2.3
1のすべての数の累乗は1です。
ステップ 8.2.2.4
乗します。
ステップ 8.2.2.5
をかけます。
ステップ 8.2.3
分数の前に負数を移動させます。
ステップ 8.2.4
最終的な答えはです。
ステップ 8.3
で微分係数はです。これは負の値なので、関数はで減少します。
なのでで減少
なのでで減少
ステップ 9
区間から値を微分係数に代入し、関数が増加関数か減少関数か判定します。
タップして手順をさらに表示してください…
ステップ 9.1
式の変数で置換えます。
ステップ 9.2
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 9.2.1
分子を簡約します。
タップして手順をさらに表示してください…
ステップ 9.2.1.1
1のすべての数の累乗は1です。
ステップ 9.2.1.2
からを引きます。
ステップ 9.2.1.3
1のすべての数の累乗は1です。
ステップ 9.2.1.4
をかけます。
ステップ 9.2.2
分母を簡約します。
タップして手順をさらに表示してください…
ステップ 9.2.2.1
をたし算します。
ステップ 9.2.2.2
からを引きます。
ステップ 9.2.2.3
乗します。
ステップ 9.2.2.4
乗します。
ステップ 9.2.3
式を簡約します。
タップして手順をさらに表示してください…
ステップ 9.2.3.1
をかけます。
ステップ 9.2.3.2
分数の前に負数を移動させます。
ステップ 9.2.4
最終的な答えはです。
ステップ 9.3
で微分係数はです。これは負の値なので、関数はで減少します。
なのでで減少
なのでで減少
ステップ 10
区間から値を微分係数に代入し、関数が増加関数か減少関数か判定します。
タップして手順をさらに表示してください…
ステップ 10.1
式の変数で置換えます。
ステップ 10.2
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 10.2.1
分子を簡約します。
タップして手順をさらに表示してください…
ステップ 10.2.1.1
乗します。
ステップ 10.2.1.2
からを引きます。
ステップ 10.2.1.3
乗します。
ステップ 10.2.2
分母を簡約します。
タップして手順をさらに表示してください…
ステップ 10.2.2.1
をたし算します。
ステップ 10.2.2.2
からを引きます。
ステップ 10.2.2.3
乗します。
ステップ 10.2.2.4
乗します。
ステップ 10.2.3
式を簡約します。
タップして手順をさらに表示してください…
ステップ 10.2.3.1
をかけます。
ステップ 10.2.3.2
をかけます。
ステップ 10.2.3.3
で割ります。
ステップ 10.2.4
最終的な答えはです。
ステップ 10.3
で微分係数はです。これは負の値なので、関数はで減少します。
なのでで減少
なのでで減少
ステップ 11
区間から値を微分係数に代入し、関数が増加関数か減少関数か判定します。
タップして手順をさらに表示してください…
ステップ 11.1
式の変数で置換えます。
ステップ 11.2
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 11.2.1
分子を簡約します。
タップして手順をさらに表示してください…
ステップ 11.2.1.1
乗します。
ステップ 11.2.1.2
からを引きます。
ステップ 11.2.1.3
乗します。
ステップ 11.2.2
分母を簡約します。
タップして手順をさらに表示してください…
ステップ 11.2.2.1
をたし算します。
ステップ 11.2.2.2
からを引きます。
ステップ 11.2.2.3
乗します。
ステップ 11.2.2.4
乗します。
ステップ 11.2.3
式を簡約します。
タップして手順をさらに表示してください…
ステップ 11.2.3.1
をかけます。
ステップ 11.2.3.2
をかけます。
ステップ 11.2.3.3
で割ります。
ステップ 11.2.4
最終的な答えはです。
ステップ 11.3
で微分係数はです。これは正の値なので、関数はで増加します。
なのでで増加
なのでで増加
ステップ 12
関数が増加する区間と減少する区間を記載します。
で増加
で減少
ステップ 13