微分積分 例

導関数を用いて増減する場所を求める f(x)=2.9+3.8x-0.9x^2
ステップ 1
一次導関数を求めます。
タップして手順をさらに表示してください…
ステップ 1.1
一次導関数を求めます。
タップして手順をさらに表示してください…
ステップ 1.1.1
微分します。
タップして手順をさらに表示してください…
ステップ 1.1.1.1
総和則では、に関する積分はです。
ステップ 1.1.1.2
について定数なので、についての微分係数はです。
ステップ 1.1.2
の値を求めます。
タップして手順をさらに表示してください…
ステップ 1.1.2.1
に対して定数なので、に対するの微分係数はです。
ステップ 1.1.2.2
のとき、であるというべき乗則を使って微分します。
ステップ 1.1.2.3
をかけます。
ステップ 1.1.3
の値を求めます。
タップして手順をさらに表示してください…
ステップ 1.1.3.1
に対して定数なので、に対するの微分係数はです。
ステップ 1.1.3.2
のとき、であるというべき乗則を使って微分します。
ステップ 1.1.3.3
をかけます。
ステップ 1.1.4
簡約します。
タップして手順をさらに表示してください…
ステップ 1.1.4.1
をたし算します。
ステップ 1.1.4.2
項を並べ替えます。
ステップ 1.2
に関するの一次導関数はです。
ステップ 2
一次導関数をと等しくし、次に方程式を解きます。
タップして手順をさらに表示してください…
ステップ 2.1
一次導関数をに等しくします。
ステップ 2.2
方程式の両辺からを引きます。
ステップ 2.3
の各項をで割り、簡約します。
タップして手順をさらに表示してください…
ステップ 2.3.1
の各項をで割ります。
ステップ 2.3.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 2.3.2.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 2.3.2.1.1
共通因数を約分します。
ステップ 2.3.2.1.2
で割ります。
ステップ 2.3.3
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 2.3.3.1
で割ります。
ステップ 3
微分係数がに等しくなるような値はです。
ステップ 4
微分係数または未定義にする点を求めた後、が増加・減少している場所を確認する間隔はです。
ステップ 5
区間から値を微分係数に代入し、関数が増加関数か減少関数か判定します。
タップして手順をさらに表示してください…
ステップ 5.1
式の変数で置換えます。
ステップ 5.2
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 5.2.1
をかけます。
ステップ 5.2.2
をたし算します。
ステップ 5.2.3
最終的な答えはです。
ステップ 5.3
で微分係数はです。これは正の値なので、関数はで増加します。
なのでで増加
なのでで増加
ステップ 6
区間から値を微分係数に代入し、関数が増加関数か減少関数か判定します。
タップして手順をさらに表示してください…
ステップ 6.1
式の変数で置換えます。
ステップ 6.2
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 6.2.1
をかけます。
ステップ 6.2.2
をたし算します。
ステップ 6.2.3
最終的な答えはです。
ステップ 6.3
で微分係数はです。これは負の値なので、関数はで減少します。
なのでで減少
なのでで減少
ステップ 7
関数が増加する区間と減少する区間を記載します。
で増加
で減少
ステップ 8