微分積分 例

区間から絶対最大値と絶対最小値を求める f(x)=x+9/x , [3,20]
,
ステップ 1
臨界点を求めます。
タップして手順をさらに表示してください…
ステップ 1.1
一次導関数を求めます。
タップして手順をさらに表示してください…
ステップ 1.1.1
一次導関数を求めます。
タップして手順をさらに表示してください…
ステップ 1.1.1.1
微分します。
タップして手順をさらに表示してください…
ステップ 1.1.1.1.1
総和則では、に関する積分はです。
ステップ 1.1.1.1.2
のとき、であるというべき乗則を使って微分します。
ステップ 1.1.1.2
の値を求めます。
タップして手順をさらに表示してください…
ステップ 1.1.1.2.1
に対して定数なので、に対するの微分係数はです。
ステップ 1.1.1.2.2
に書き換えます。
ステップ 1.1.1.2.3
のとき、であるというべき乗則を使って微分します。
ステップ 1.1.1.2.4
をかけます。
ステップ 1.1.1.3
負の指数法則を利用して式を書き換えます。
ステップ 1.1.1.4
簡約します。
タップして手順をさらに表示してください…
ステップ 1.1.1.4.1
項をまとめます。
タップして手順をさらに表示してください…
ステップ 1.1.1.4.1.1
をまとめます。
ステップ 1.1.1.4.1.2
分数の前に負数を移動させます。
ステップ 1.1.1.4.2
項を並べ替えます。
ステップ 1.1.2
に関するの一次導関数はです。
ステップ 1.2
一次導関数をと等しくし、次に方程式を解きます。
タップして手順をさらに表示してください…
ステップ 1.2.1
一次導関数をに等しくします。
ステップ 1.2.2
方程式の両辺からを引きます。
ステップ 1.2.3
方程式の項の最小公分母を求めます。
タップして手順をさらに表示してください…
ステップ 1.2.3.1
値のリストの最小公分母を求めることは、それらの値の分母の最小公倍数を求めることと同じです。
ステップ 1.2.3.2
1と任意の式の最小公倍数はその式です。
ステップ 1.2.4
の各項にを掛け、分数を消去します。
タップして手順をさらに表示してください…
ステップ 1.2.4.1
の各項にを掛けます。
ステップ 1.2.4.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 1.2.4.2.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 1.2.4.2.1.1
の先頭の負を分子に移動させます。
ステップ 1.2.4.2.1.2
共通因数を約分します。
ステップ 1.2.4.2.1.3
式を書き換えます。
ステップ 1.2.5
方程式を解きます。
タップして手順をさらに表示してください…
ステップ 1.2.5.1
方程式をとして書き換えます。
ステップ 1.2.5.2
の各項をで割り、簡約します。
タップして手順をさらに表示してください…
ステップ 1.2.5.2.1
の各項をで割ります。
ステップ 1.2.5.2.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 1.2.5.2.2.1
2つの負の値を割ると正の値になります。
ステップ 1.2.5.2.2.2
で割ります。
ステップ 1.2.5.2.3
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 1.2.5.2.3.1
で割ります。
ステップ 1.2.5.3
方程式の両辺の指定した根をとり、左辺の指数を消去します。
ステップ 1.2.5.4
を簡約します。
タップして手順をさらに表示してください…
ステップ 1.2.5.4.1
に書き換えます。
ステップ 1.2.5.4.2
正の実数と仮定して、累乗根の下から項を取り出します。
ステップ 1.2.5.5
完全解は、解の正と負の部分の両方の計算結果です。
タップして手順をさらに表示してください…
ステップ 1.2.5.5.1
まず、の正の数を利用し、1番目の解を求めます。
ステップ 1.2.5.5.2
次に、の負の値を利用し。2番目の解を求めます。
ステップ 1.2.5.5.3
完全解は、解の正と負の部分の両方の計算結果です。
ステップ 1.3
微分係数が未定義になる値を求めます。
タップして手順をさらに表示してください…
ステップ 1.3.1
の分母をに等しいとして、式が未定義である場所を求めます。
ステップ 1.3.2
について解きます。
タップして手順をさらに表示してください…
ステップ 1.3.2.1
方程式の両辺の指定した根をとり、左辺の指数を消去します。
ステップ 1.3.2.2
を簡約します。
タップして手順をさらに表示してください…
ステップ 1.3.2.2.1
に書き換えます。
ステップ 1.3.2.2.2
正の実数と仮定して、累乗根の下から項を取り出します。
ステップ 1.3.2.2.3
プラスマイナスです。
ステップ 1.4
微分係数がまたは未定義のとき、各におけるの値を求めます。
タップして手順をさらに表示してください…
ステップ 1.4.1
での値を求めます。
タップして手順をさらに表示してください…
ステップ 1.4.1.1
に代入します。
ステップ 1.4.1.2
簡約します。
タップして手順をさらに表示してください…
ステップ 1.4.1.2.1
で割ります。
ステップ 1.4.1.2.2
をたし算します。
ステップ 1.4.2
での値を求めます。
タップして手順をさらに表示してください…
ステップ 1.4.2.1
に代入します。
ステップ 1.4.2.2
簡約します。
タップして手順をさらに表示してください…
ステップ 1.4.2.2.1
で割ります。
ステップ 1.4.2.2.2
からを引きます。
ステップ 1.4.3
での値を求めます。
タップして手順をさらに表示してください…
ステップ 1.4.3.1
に代入します。
ステップ 1.4.3.2
による除算を含む式です。式は未定義です。
未定義
未定義
ステップ 1.4.4
点のすべてを一覧にします。
ステップ 2
区間上にない点を除外します。
ステップ 3
含まれる端点における値を求めます。
タップして手順をさらに表示してください…
ステップ 3.1
での値を求めます。
タップして手順をさらに表示してください…
ステップ 3.1.1
に代入します。
ステップ 3.1.2
簡約します。
タップして手順をさらに表示してください…
ステップ 3.1.2.1
で割ります。
ステップ 3.1.2.2
をたし算します。
ステップ 3.2
での値を求めます。
タップして手順をさらに表示してください…
ステップ 3.2.1
に代入します。
ステップ 3.2.2
簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.2.1
を公分母のある分数として書くために、を掛けます。
ステップ 3.2.2.2
をまとめます。
ステップ 3.2.2.3
公分母の分子をまとめます。
ステップ 3.2.2.4
分子を簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.2.4.1
をかけます。
ステップ 3.2.2.4.2
をたし算します。
ステップ 3.3
点のすべてを一覧にします。
ステップ 4
の各値に対して求めたの値を比較し、与えられた区間での最大限と最小限を決定します。最大限は最も高いの値で発生し、最小値は最も低いの値で発生します。
最大値:
最小値:
ステップ 5