微分積分 例

水平方向の接線を求める f(x)=xsin(x)
ステップ 1
微分係数を求めます。
タップして手順をさらに表示してください…
ステップ 1.1
およびのとき、であるという積の法則を使って微分します。
ステップ 1.2
に関するの微分係数はです。
ステップ 1.3
べき乗則を使って微分します。
タップして手順をさらに表示してください…
ステップ 1.3.1
のとき、であるというべき乗則を使って微分します。
ステップ 1.3.2
をかけます。
ステップ 2
方程式の各辺をグラフにします。解は交点のx値です。
ステップ 3
における元の関数を解きます。
タップして手順をさらに表示してください…
ステップ 3.1
式の変数で置換えます。
ステップ 3.2
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.1
の厳密値はです。
ステップ 3.2.2
をかけます。
ステップ 3.2.3
最終的な答えはです。
ステップ 4
における元の関数を解きます。
タップして手順をさらに表示してください…
ステップ 4.1
式の変数で置換えます。
ステップ 4.2
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 4.2.1
をかけます。
ステップ 4.2.2
最終的な答えはです。
ステップ 5
における元の関数を解きます。
タップして手順をさらに表示してください…
ステップ 5.1
式の変数で置換えます。
ステップ 5.2
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 5.2.1
をかけます。
ステップ 5.2.2
最終的な答えはです。
ステップ 6
における元の関数を解きます。
タップして手順をさらに表示してください…
ステップ 6.1
式の変数で置換えます。
ステップ 6.2
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 6.2.1
をかけます。
ステップ 6.2.2
最終的な答えはです。
ステップ 7
における元の関数を解きます。
タップして手順をさらに表示してください…
ステップ 7.1
式の変数で置換えます。
ステップ 7.2
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 7.2.1
をかけます。
ステップ 7.2.2
最終的な答えはです。
ステップ 8
における元の関数を解きます。
タップして手順をさらに表示してください…
ステップ 8.1
式の変数で置換えます。
ステップ 8.2
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 8.2.1
をかけます。
ステップ 8.2.2
最終的な答えはです。
ステップ 9
における元の関数を解きます。
タップして手順をさらに表示してください…
ステップ 9.1
式の変数で置換えます。
ステップ 9.2
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 9.2.1
をかけます。
ステップ 9.2.2
最終的な答えはです。
ステップ 10
関数の水平接線はです。
ステップ 11