微分積分 例

水平方向の接線を求める x^3+y^3-9xy=0
ステップ 1
Set each solution of as a function of .
ステップ 2
Because the variable in the equation has a degree greater than , use implicit differentiation to solve for the derivative .
タップして手順をさらに表示してください…
ステップ 2.1
方程式の両辺を微分します。
ステップ 2.2
方程式の左辺を微分します。
タップして手順をさらに表示してください…
ステップ 2.2.1
微分します。
タップして手順をさらに表示してください…
ステップ 2.2.1.1
総和則では、に関する積分はです。
ステップ 2.2.1.2
のとき、であるというべき乗則を使って微分します。
ステップ 2.2.2
の値を求めます。
タップして手順をさらに表示してください…
ステップ 2.2.2.1
およびのとき、であるという連鎖律を使って微分します。
タップして手順をさらに表示してください…
ステップ 2.2.2.1.1
連鎖律を当てはめるために、とします。
ステップ 2.2.2.1.2
のとき、であるというべき乗則を使って微分します。
ステップ 2.2.2.1.3
のすべての発生をで置き換えます。
ステップ 2.2.2.2
に書き換えます。
ステップ 2.2.3
の値を求めます。
タップして手順をさらに表示してください…
ステップ 2.2.3.1
に対して定数なので、に対するの微分係数はです。
ステップ 2.2.3.2
およびのとき、であるという積の法則を使って微分します。
ステップ 2.2.3.3
に書き換えます。
ステップ 2.2.3.4
のとき、であるというべき乗則を使って微分します。
ステップ 2.2.3.5
をかけます。
ステップ 2.2.4
簡約します。
タップして手順をさらに表示してください…
ステップ 2.2.4.1
分配則を当てはめます。
ステップ 2.2.4.2
不要な括弧を削除します。
ステップ 2.3
について定数なので、についての微分係数はです。
ステップ 2.4
左辺と右辺を等しくし、式を作り変えます。
ステップ 2.5
について解きます。
タップして手順をさらに表示してください…
ステップ 2.5.1
を含まないすべての項を方程式の右辺に移動させます。
タップして手順をさらに表示してください…
ステップ 2.5.1.1
方程式の両辺からを引きます。
ステップ 2.5.1.2
方程式の両辺にを足します。
ステップ 2.5.2
で因数分解します。
タップして手順をさらに表示してください…
ステップ 2.5.2.1
で因数分解します。
ステップ 2.5.2.2
で因数分解します。
ステップ 2.5.2.3
で因数分解します。
ステップ 2.5.3
の各項をで割り、簡約します。
タップして手順をさらに表示してください…
ステップ 2.5.3.1
の各項をで割ります。
ステップ 2.5.3.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 2.5.3.2.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 2.5.3.2.1.1
共通因数を約分します。
ステップ 2.5.3.2.1.2
式を書き換えます。
ステップ 2.5.3.2.2
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 2.5.3.2.2.1
共通因数を約分します。
ステップ 2.5.3.2.2.2
で割ります。
ステップ 2.5.3.3
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 2.5.3.3.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 2.5.3.3.1.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 2.5.3.3.1.1.1
で因数分解します。
ステップ 2.5.3.3.1.1.2
共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 2.5.3.3.1.1.2.1
共通因数を約分します。
ステップ 2.5.3.3.1.1.2.2
式を書き換えます。
ステップ 2.5.3.3.1.2
分数の前に負数を移動させます。
ステップ 2.5.3.3.1.3
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 2.5.3.3.1.3.1
で因数分解します。
ステップ 2.5.3.3.1.3.2
共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 2.5.3.3.1.3.2.1
共通因数を約分します。
ステップ 2.5.3.3.1.3.2.2
式を書き換えます。
ステップ 2.5.3.3.2
項を簡約します。
タップして手順をさらに表示してください…
ステップ 2.5.3.3.2.1
公分母の分子をまとめます。
ステップ 2.5.3.3.2.2
で因数分解します。
ステップ 2.5.3.3.2.3
で因数分解します。
ステップ 2.5.3.3.2.4
で因数分解します。
ステップ 2.5.3.3.2.5
式を簡約します。
タップして手順をさらに表示してください…
ステップ 2.5.3.3.2.5.1
に書き換えます。
ステップ 2.5.3.3.2.5.2
分数の前に負数を移動させます。
ステップ 2.6
で置き換えます。
ステップ 3
微分係数をと等しくし、次に方程式を解きます。
タップして手順をさらに表示してください…
ステップ 3.1
分子を0に等しくします。
ステップ 3.2
について方程式を解きます。
タップして手順をさらに表示してください…
ステップ 3.2.1
方程式の両辺にを足します。
ステップ 3.2.2
方程式の両辺の指定した根をとり、左辺の指数を消去します。
ステップ 3.2.3
完全解は、解の正と負の部分の両方の計算結果です。
タップして手順をさらに表示してください…
ステップ 3.2.3.1
まず、の正の数を利用し、1番目の解を求めます。
ステップ 3.2.3.2
次に、の負の値を利用し。2番目の解を求めます。
ステップ 3.2.3.3
完全解は、解の正と負の部分の両方の計算結果です。
ステップ 4
Solve the function at .
タップして手順をさらに表示してください…
ステップ 4.1
式の変数で置換えます。
ステップ 4.2
最終的な答えはです。
ステップ 5
The horizontal tangent lines are
ステップ 6