問題を入力...
微分積分 例
ステップ 1
関数が奇関数、偶関数、またはそのどちらでもないか判定し、対称を求めます。
1. 奇数のとき、この関数は原点に対して対称です。
2. 偶数のとき、関数はy軸に対して対称です。
ステップ 2
ステップ 2.1
をで因数分解します。
ステップ 2.1.1
をで因数分解します。
ステップ 2.1.2
をで因数分解します。
ステップ 2.1.3
をで因数分解します。
ステップ 2.2
をに書き換えます。
ステップ 2.3
両項とも完全平方なので、平方の差の公式を利用して、因数分解します。このとき、であり、です。
ステップ 2.4
をに書き換えます。
ステップ 2.4.1
をに書き換えます。
ステップ 2.4.2
括弧を付けます。
ステップ 2.5
累乗根の下から項を取り出します。
ステップ 2.6
を乗します。
ステップ 3
ステップ 3.1
内のの出現回数をすべてに代入してを求めます。
ステップ 3.2
括弧を削除します。
ステップ 4
ステップ 4.1
ならば確認します。
ステップ 4.2
なので、関数は偶関数です。
関数は偶関数です。
関数は偶関数です。
ステップ 5
関数が奇数ではないので、原点に対して対称ではありません。
原点対称がありません
ステップ 6
関数が偶数のとき、関数はy軸に対して対称です。
Y軸対称
ステップ 7