問題を入力...
微分積分 例
ステップ 1
総和則では、のに関する積分はです。
ステップ 2
ステップ 2.1
はに対して定数なので、に対するの微分係数はです。
ステップ 2.2
およびのとき、はであるという積の法則を使って微分します。
ステップ 2.3
およびのとき、はであるという連鎖律を使って微分します。
ステップ 2.3.1
連鎖律を当てはめるために、をとします。
ステップ 2.3.2
に関するの微分係数はです。
ステップ 2.3.3
のすべての発生をで置き換えます。
ステップ 2.4
はに対して定数なので、に対するの微分係数はです。
ステップ 2.5
のとき、はであるというべき乗則を使って微分します。
ステップ 2.6
およびのとき、はであるという連鎖律を使って微分します。
ステップ 2.6.1
連鎖律を当てはめるために、をとします。
ステップ 2.6.2
に関するの微分係数はです。
ステップ 2.6.3
のすべての発生をで置き換えます。
ステップ 2.7
はに対して定数なので、に対するの微分係数はです。
ステップ 2.8
のとき、はであるというべき乗則を使って微分します。
ステップ 2.9
にをかけます。
ステップ 2.10
をの左に移動させます。
ステップ 2.11
を乗します。
ステップ 2.12
を乗します。
ステップ 2.13
べき乗則を利用して指数を組み合わせます。
ステップ 2.14
とをたし算します。
ステップ 2.15
にをかけます。
ステップ 2.16
をの左に移動させます。
ステップ 2.17
を乗します。
ステップ 2.18
べき乗則を利用して指数を組み合わせます。
ステップ 2.19
とをたし算します。
ステップ 3
ステップ 3.1
およびのとき、はであるという連鎖律を使って微分します。
ステップ 3.1.1
連鎖律を当てはめるために、をとします。
ステップ 3.1.2
=のとき、はであるという指数法則を使って微分します。
ステップ 3.1.3
のすべての発生をで置き換えます。
ステップ 3.2
はに対して定数なので、に対するの微分係数はです。
ステップ 3.3
のとき、はであるというべき乗則を使って微分します。
ステップ 3.4
にをかけます。
ステップ 3.5
をの左に移動させます。
ステップ 4
ステップ 4.1
はに対して定数なので、に対するの微分係数はです。
ステップ 4.2
のとき、はであるというべき乗則を使って微分します。
ステップ 4.3
にをかけます。
ステップ 5
ステップ 5.1
分配則を当てはめます。
ステップ 5.2
項をまとめます。
ステップ 5.2.1
にをかけます。
ステップ 5.2.2
にをかけます。
ステップ 5.3
項を並べ替えます。