問題を入力...
微分積分 例
ステップ 1
ステップ 1.1
一次導関数を求めます。
ステップ 1.1.1
総和則では、のに関する積分はです。
ステップ 1.1.2
=のとき、はであるという指数法則を使って微分します。
ステップ 1.1.3
の値を求めます。
ステップ 1.1.3.1
はに対して定数なので、に対するの微分係数はです。
ステップ 1.1.3.2
のとき、はであるというべき乗則を使って微分します。
ステップ 1.1.3.3
にをかけます。
ステップ 1.2
に関するの一次導関数はです。
ステップ 2
ステップ 2.1
一次導関数をに等しくします。
ステップ 2.2
方程式の両辺にを足します。
ステップ 2.3
方程式の両辺の自然対数をとり、指数から変数を削除します。
ステップ 2.4
左辺を展開します。
ステップ 2.4.1
を対数の外に移動させて、を展開します。
ステップ 2.4.2
の自然対数はです。
ステップ 2.4.3
にをかけます。
ステップ 2.5
の自然対数はです。
ステップ 3
ステップ 3.1
式の定義域は、式が未定義の場合を除き、すべての実数です。この場合、式が未定義になるような実数はありません。
ステップ 4
ステップ 4.1
での値を求めます。
ステップ 4.1.1
をに代入します。
ステップ 4.1.2
簡約します。
ステップ 4.1.2.1
にべき乗するものはとなります。
ステップ 4.1.2.2
からを引きます。
ステップ 4.2
点のすべてを一覧にします。
ステップ 5