問題を入力...
微分積分 例
ステップ 1
ステップ 1.1
一次導関数を求めます。
ステップ 1.1.1
およびのとき、はであるという連鎖律を使って微分します。
ステップ 1.1.1.1
連鎖律を当てはめるために、をとします。
ステップ 1.1.1.2
=のとき、はであるという指数法則を使って微分します。
ステップ 1.1.1.3
のすべての発生をで置き換えます。
ステップ 1.1.2
微分します。
ステップ 1.1.2.1
はに対して定数なので、に対するの微分係数はです。
ステップ 1.1.2.2
のとき、はであるというべき乗則を使って微分します。
ステップ 1.1.2.3
式を簡約します。
ステップ 1.1.2.3.1
にをかけます。
ステップ 1.1.2.3.2
をの左に移動させます。
ステップ 1.2
に関するの一次導関数はです。
ステップ 2
ステップ 2.1
一次導関数をに等しくします。
ステップ 2.2
方程式の両辺の自然対数をとり、指数から変数を削除します。
ステップ 2.3
が未定義なので、方程式は解くことができません。
未定義
ステップ 2.4
の解はありません
解がありません
解がありません
ステップ 3
ステップ 3.1
式の定義域は、式が未定義の場合を除き、すべての実数です。この場合、式が未定義になるような実数はありません。
ステップ 4
微分係数がまたは未定義であるという、元の問題の定義域にの値はありません。
臨界点が見つかりません