微分積分 例

Найти 2nd-ю производную y=(1+x)/(1-x)
ステップ 1
一次導関数を求めます。
タップして手順をさらに表示してください…
ステップ 1.1
およびのとき、であるという商の法則を使って微分します。
ステップ 1.2
微分します。
タップして手順をさらに表示してください…
ステップ 1.2.1
総和則では、に関する積分はです。
ステップ 1.2.2
について定数なので、についての微分係数はです。
ステップ 1.2.3
をたし算します。
ステップ 1.2.4
のとき、であるというべき乗則を使って微分します。
ステップ 1.2.5
をかけます。
ステップ 1.2.6
総和則では、に関する積分はです。
ステップ 1.2.7
について定数なので、についての微分係数はです。
ステップ 1.2.8
をたし算します。
ステップ 1.2.9
に対して定数なので、に対するの微分係数はです。
ステップ 1.2.10
掛け算します。
タップして手順をさらに表示してください…
ステップ 1.2.10.1
をかけます。
ステップ 1.2.10.2
をかけます。
ステップ 1.2.11
のとき、であるというべき乗則を使って微分します。
ステップ 1.2.12
項を加えて簡約します。
タップして手順をさらに表示してください…
ステップ 1.2.12.1
をかけます。
ステップ 1.2.12.2
をたし算します。
ステップ 1.2.12.3
をたし算します。
ステップ 1.2.12.4
式を簡約します。
タップして手順をさらに表示してください…
ステップ 1.2.12.4.1
をたし算します。
ステップ 1.2.12.4.2
項を並べ替えます。
ステップ 2
二次導関数を求めます。
タップして手順をさらに表示してください…
ステップ 2.1
定数倍の公式を使って微分します。
タップして手順をさらに表示してください…
ステップ 2.1.1
に対して定数なので、に対するの微分係数はです。
ステップ 2.1.2
指数の基本法則を当てはめます。
タップして手順をさらに表示してください…
ステップ 2.1.2.1
に書き換えます。
ステップ 2.1.2.2
の指数を掛けます。
タップして手順をさらに表示してください…
ステップ 2.1.2.2.1
べき乗則を当てはめて、指数をかけ算します。
ステップ 2.1.2.2.2
をかけます。
ステップ 2.2
およびのとき、であるという連鎖律を使って微分します。
タップして手順をさらに表示してください…
ステップ 2.2.1
連鎖律を当てはめるために、とします。
ステップ 2.2.2
のとき、であるというべき乗則を使って微分します。
ステップ 2.2.3
のすべての発生をで置き換えます。
ステップ 2.3
微分します。
タップして手順をさらに表示してください…
ステップ 2.3.1
をかけます。
ステップ 2.3.2
総和則では、に関する積分はです。
ステップ 2.3.3
に対して定数なので、に対するの微分係数はです。
ステップ 2.3.4
のとき、であるというべき乗則を使って微分します。
ステップ 2.3.5
をかけます。
ステップ 2.3.6
について定数なので、についての微分係数はです。
ステップ 2.3.7
式を簡約します。
タップして手順をさらに表示してください…
ステップ 2.3.7.1
をたし算します。
ステップ 2.3.7.2
をかけます。
ステップ 2.4
簡約します。
タップして手順をさらに表示してください…
ステップ 2.4.1
負の指数法則を利用して式を書き換えます。
ステップ 2.4.2
をまとめます。
ステップ 3
三次導関数を求めます。
タップして手順をさらに表示してください…
ステップ 3.1
定数倍の公式を使って微分します。
タップして手順をさらに表示してください…
ステップ 3.1.1
に対して定数なので、に対するの微分係数はです。
ステップ 3.1.2
指数の基本法則を当てはめます。
タップして手順をさらに表示してください…
ステップ 3.1.2.1
に書き換えます。
ステップ 3.1.2.2
の指数を掛けます。
タップして手順をさらに表示してください…
ステップ 3.1.2.2.1
べき乗則を当てはめて、指数をかけ算します。
ステップ 3.1.2.2.2
をかけます。
ステップ 3.2
およびのとき、であるという連鎖律を使って微分します。
タップして手順をさらに表示してください…
ステップ 3.2.1
連鎖律を当てはめるために、とします。
ステップ 3.2.2
のとき、であるというべき乗則を使って微分します。
ステップ 3.2.3
のすべての発生をで置き換えます。
ステップ 3.3
微分します。
タップして手順をさらに表示してください…
ステップ 3.3.1
をかけます。
ステップ 3.3.2
総和則では、に関する積分はです。
ステップ 3.3.3
に対して定数なので、に対するの微分係数はです。
ステップ 3.3.4
のとき、であるというべき乗則を使って微分します。
ステップ 3.3.5
をかけます。
ステップ 3.3.6
について定数なので、についての微分係数はです。
ステップ 3.3.7
式を簡約します。
タップして手順をさらに表示してください…
ステップ 3.3.7.1
をたし算します。
ステップ 3.3.7.2
をかけます。
ステップ 3.4
簡約します。
タップして手順をさらに表示してください…
ステップ 3.4.1
負の指数法則を利用して式を書き換えます。
ステップ 3.4.2
をまとめます。
ステップ 4
四次導関数を求めます。
タップして手順をさらに表示してください…
ステップ 4.1
定数倍の公式を使って微分します。
タップして手順をさらに表示してください…
ステップ 4.1.1
に対して定数なので、に対するの微分係数はです。
ステップ 4.1.2
指数の基本法則を当てはめます。
タップして手順をさらに表示してください…
ステップ 4.1.2.1
に書き換えます。
ステップ 4.1.2.2
の指数を掛けます。
タップして手順をさらに表示してください…
ステップ 4.1.2.2.1
べき乗則を当てはめて、指数をかけ算します。
ステップ 4.1.2.2.2
をかけます。
ステップ 4.2
およびのとき、であるという連鎖律を使って微分します。
タップして手順をさらに表示してください…
ステップ 4.2.1
連鎖律を当てはめるために、とします。
ステップ 4.2.2
のとき、であるというべき乗則を使って微分します。
ステップ 4.2.3
のすべての発生をで置き換えます。
ステップ 4.3
微分します。
タップして手順をさらに表示してください…
ステップ 4.3.1
をかけます。
ステップ 4.3.2
総和則では、に関する積分はです。
ステップ 4.3.3
に対して定数なので、に対するの微分係数はです。
ステップ 4.3.4
のとき、であるというべき乗則を使って微分します。
ステップ 4.3.5
をかけます。
ステップ 4.3.6
について定数なので、についての微分係数はです。
ステップ 4.3.7
式を簡約します。
タップして手順をさらに表示してください…
ステップ 4.3.7.1
をたし算します。
ステップ 4.3.7.2
をかけます。
ステップ 4.4
簡約します。
タップして手順をさらに表示してください…
ステップ 4.4.1
負の指数法則を利用して式を書き換えます。
ステップ 4.4.2
をまとめます。