問題を入力...
微分積分 例
ステップ 1
がに近づいたら、極限で極限の法則の和を利用して分解します。
ステップ 2
極限べき乗則を利用して、指数をから極限値外側に移動させます。
ステップ 3
がに近づくと定数であるの極限値を求めます。
ステップ 4
根号の下に極限を移動させます。
ステップ 5
がに近づいたら、極限で極限の法則の和を利用して分解します。
ステップ 6
極限べき乗則を利用して、指数をから極限値外側に移動させます。
ステップ 7
がに近づくと定数であるの極限値を求めます。
ステップ 8
ステップ 8.1
をに代入し、の極限値を求めます。
ステップ 8.2
をに代入し、の極限値を求めます。
ステップ 9
ステップ 9.1
各項を簡約します。
ステップ 9.1.1
を乗します。
ステップ 9.1.2
にをかけます。
ステップ 9.1.3
を乗します。
ステップ 9.1.4
にをかけます。
ステップ 9.1.5
からを引きます。
ステップ 9.1.6
をに書き換えます。
ステップ 9.1.7
実数と仮定して、累乗根の下から項を取り出します。
ステップ 9.2
からを引きます。
ステップ 9.3
からを引きます。