微分積分 例

極大値と極小値を求める f(x)=e^(9x)
ステップ 1
関数の一次導関数を求めます。
タップして手順をさらに表示してください…
ステップ 1.1
およびのとき、であるという連鎖律を使って微分します。
タップして手順をさらに表示してください…
ステップ 1.1.1
連鎖律を当てはめるために、とします。
ステップ 1.1.2
=のとき、であるという指数法則を使って微分します。
ステップ 1.1.3
のすべての発生をで置き換えます。
ステップ 1.2
微分します。
タップして手順をさらに表示してください…
ステップ 1.2.1
に対して定数なので、に対するの微分係数はです。
ステップ 1.2.2
のとき、であるというべき乗則を使って微分します。
ステップ 1.2.3
式を簡約します。
タップして手順をさらに表示してください…
ステップ 1.2.3.1
をかけます。
ステップ 1.2.3.2
の左に移動させます。
ステップ 2
関数の二次導関数を求めます。
タップして手順をさらに表示してください…
ステップ 2.1
に対して定数なので、に対するの微分係数はです。
ステップ 2.2
およびのとき、であるという連鎖律を使って微分します。
タップして手順をさらに表示してください…
ステップ 2.2.1
連鎖律を当てはめるために、とします。
ステップ 2.2.2
=のとき、であるという指数法則を使って微分します。
ステップ 2.2.3
のすべての発生をで置き換えます。
ステップ 2.3
微分します。
タップして手順をさらに表示してください…
ステップ 2.3.1
に対して定数なので、に対するの微分係数はです。
ステップ 2.3.2
をかけます。
ステップ 2.3.3
のとき、であるというべき乗則を使って微分します。
ステップ 2.3.4
をかけます。
ステップ 3
微分係数をと等しくし、式を解いて関数の極大値と最小値を求めます。
ステップ 4
一次導関数がに等しくなるの値がないので、極値はありません。
極値がありません
ステップ 5
極値がありません
ステップ 6