問題を入力...
微分積分 例
ステップ 1
を関数で書きます。
ステップ 2
ステップ 2.1
総和則では、のに関する積分はです。
ステップ 2.2
の値を求めます。
ステップ 2.2.1
はに対して定数なので、に対するの微分係数はです。
ステップ 2.2.2
のとき、はであるというべき乗則を使って微分します。
ステップ 2.2.3
にをかけます。
ステップ 2.3
の値を求めます。
ステップ 2.3.1
はに対して定数なので、に対するの微分係数はです。
ステップ 2.3.2
のとき、はであるというべき乗則を使って微分します。
ステップ 2.3.3
にをかけます。
ステップ 2.4
定数の規則を使って微分します。
ステップ 2.4.1
はについて定数なので、についての微分係数はです。
ステップ 2.4.2
とをたし算します。
ステップ 3
ステップ 3.1
総和則では、のに関する積分はです。
ステップ 3.2
の値を求めます。
ステップ 3.2.1
はに対して定数なので、に対するの微分係数はです。
ステップ 3.2.2
のとき、はであるというべき乗則を使って微分します。
ステップ 3.2.3
にをかけます。
ステップ 3.3
定数の規則を使って微分します。
ステップ 3.3.1
はについて定数なので、についての微分係数はです。
ステップ 3.3.2
とをたし算します。
ステップ 4
微分係数をと等しくし、式を解いて関数の極大値と最小値を求めます。
ステップ 5
ステップ 5.1
一次導関数を求めます。
ステップ 5.1.1
総和則では、のに関する積分はです。
ステップ 5.1.2
の値を求めます。
ステップ 5.1.2.1
はに対して定数なので、に対するの微分係数はです。
ステップ 5.1.2.2
のとき、はであるというべき乗則を使って微分します。
ステップ 5.1.2.3
にをかけます。
ステップ 5.1.3
の値を求めます。
ステップ 5.1.3.1
はに対して定数なので、に対するの微分係数はです。
ステップ 5.1.3.2
のとき、はであるというべき乗則を使って微分します。
ステップ 5.1.3.3
にをかけます。
ステップ 5.1.4
定数の規則を使って微分します。
ステップ 5.1.4.1
はについて定数なので、についての微分係数はです。
ステップ 5.1.4.2
とをたし算します。
ステップ 5.2
に関するの一次導関数はです。
ステップ 6
ステップ 6.1
一次導関数をに等しくします。
ステップ 6.2
方程式の両辺にを足します。
ステップ 6.3
方程式の両辺からを引きます。
ステップ 6.4
方程式の左辺を因数分解します。
ステップ 6.4.1
をで因数分解します。
ステップ 6.4.1.1
をで因数分解します。
ステップ 6.4.1.2
をで因数分解します。
ステップ 6.4.1.3
をで因数分解します。
ステップ 6.4.2
をに書き換えます。
ステップ 6.4.3
両項とも完全立方なので、立方の差の公式を利用して、因数分解します。このとき、であり、です。
ステップ 6.4.4
因数分解。
ステップ 6.4.4.1
簡約します。
ステップ 6.4.4.1.1
をの左に移動させます。
ステップ 6.4.4.1.2
を乗します。
ステップ 6.4.4.2
不要な括弧を削除します。
ステップ 6.5
方程式の左辺の個々の因数がと等しいならば、式全体はと等しくなります。
ステップ 6.6
をに等しくし、を解きます。
ステップ 6.6.1
がに等しいとします。
ステップ 6.6.2
方程式の両辺にを足します。
ステップ 6.7
をに等しくし、を解きます。
ステップ 6.7.1
がに等しいとします。
ステップ 6.7.2
についてを解きます。
ステップ 6.7.2.1
二次方程式の解の公式を利用して解を求めます。
ステップ 6.7.2.2
、、およびを二次方程式の解の公式に代入し、の値を求めます。
ステップ 6.7.2.3
簡約します。
ステップ 6.7.2.3.1
分子を簡約します。
ステップ 6.7.2.3.1.1
を乗します。
ステップ 6.7.2.3.1.2
を掛けます。
ステップ 6.7.2.3.1.2.1
にをかけます。
ステップ 6.7.2.3.1.2.2
にをかけます。
ステップ 6.7.2.3.1.3
からを引きます。
ステップ 6.7.2.3.1.4
をに書き換えます。
ステップ 6.7.2.3.1.5
をに書き換えます。
ステップ 6.7.2.3.1.6
をに書き換えます。
ステップ 6.7.2.3.1.7
をに書き換えます。
ステップ 6.7.2.3.1.7.1
をで因数分解します。
ステップ 6.7.2.3.1.7.2
をに書き換えます。
ステップ 6.7.2.3.1.8
累乗根の下から項を取り出します。
ステップ 6.7.2.3.1.9
をの左に移動させます。
ステップ 6.7.2.3.2
にをかけます。
ステップ 6.7.2.3.3
を簡約します。
ステップ 6.7.2.4
式を簡約し、の部の値を求めます。
ステップ 6.7.2.4.1
分子を簡約します。
ステップ 6.7.2.4.1.1
を乗します。
ステップ 6.7.2.4.1.2
を掛けます。
ステップ 6.7.2.4.1.2.1
にをかけます。
ステップ 6.7.2.4.1.2.2
にをかけます。
ステップ 6.7.2.4.1.3
からを引きます。
ステップ 6.7.2.4.1.4
をに書き換えます。
ステップ 6.7.2.4.1.5
をに書き換えます。
ステップ 6.7.2.4.1.6
をに書き換えます。
ステップ 6.7.2.4.1.7
をに書き換えます。
ステップ 6.7.2.4.1.7.1
をで因数分解します。
ステップ 6.7.2.4.1.7.2
をに書き換えます。
ステップ 6.7.2.4.1.8
累乗根の下から項を取り出します。
ステップ 6.7.2.4.1.9
をの左に移動させます。
ステップ 6.7.2.4.2
にをかけます。
ステップ 6.7.2.4.3
を簡約します。
ステップ 6.7.2.4.4
をに変更します。
ステップ 6.7.2.5
式を簡約し、の部の値を求めます。
ステップ 6.7.2.5.1
分子を簡約します。
ステップ 6.7.2.5.1.1
を乗します。
ステップ 6.7.2.5.1.2
を掛けます。
ステップ 6.7.2.5.1.2.1
にをかけます。
ステップ 6.7.2.5.1.2.2
にをかけます。
ステップ 6.7.2.5.1.3
からを引きます。
ステップ 6.7.2.5.1.4
をに書き換えます。
ステップ 6.7.2.5.1.5
をに書き換えます。
ステップ 6.7.2.5.1.6
をに書き換えます。
ステップ 6.7.2.5.1.7
をに書き換えます。
ステップ 6.7.2.5.1.7.1
をで因数分解します。
ステップ 6.7.2.5.1.7.2
をに書き換えます。
ステップ 6.7.2.5.1.8
累乗根の下から項を取り出します。
ステップ 6.7.2.5.1.9
をの左に移動させます。
ステップ 6.7.2.5.2
にをかけます。
ステップ 6.7.2.5.3
を簡約します。
ステップ 6.7.2.5.4
をに変更します。
ステップ 6.7.2.6
最終的な答えは両方の解の組み合わせです。
ステップ 6.8
最終解はを真にするすべての値です。
ステップ 7
ステップ 7.1
式の定義域は、式が未定義の場合を除き、すべての実数です。この場合、式が未定義になるような実数はありません。
ステップ 8
値を求める臨界点です。
ステップ 9
で二次導関数の値を求めます。二次導関数が正のとき、この値が極小値です。二次導関数が負の時、この値が極大値です。
ステップ 10
ステップ 10.1
を乗します。
ステップ 10.2
にをかけます。
ステップ 11
は二次導関数の値が正であるため、極小値です。これは二次導関数テストと呼ばれます。
は極小値です
ステップ 12
ステップ 12.1
式の変数をで置換えます。
ステップ 12.2
結果を簡約します。
ステップ 12.2.1
各項を簡約します。
ステップ 12.2.1.1
を乗します。
ステップ 12.2.1.2
にをかけます。
ステップ 12.2.1.3
にをかけます。
ステップ 12.2.2
足し算と引き算で簡約します。
ステップ 12.2.2.1
からを引きます。
ステップ 12.2.2.2
とをたし算します。
ステップ 12.2.3
最終的な答えはです。
ステップ 13
の極値です。
は極小値です
ステップ 14