微分積分 例

極大値と極小値を求める x^4-12x^3+48x^2-64x
ステップ 1
を関数で書きます。
ステップ 2
関数の一次導関数を求めます。
タップして手順をさらに表示してください…
ステップ 2.1
微分します。
タップして手順をさらに表示してください…
ステップ 2.1.1
総和則では、に関する積分はです。
ステップ 2.1.2
のとき、であるというべき乗則を使って微分します。
ステップ 2.2
の値を求めます。
タップして手順をさらに表示してください…
ステップ 2.2.1
に対して定数なので、に対するの微分係数はです。
ステップ 2.2.2
のとき、であるというべき乗則を使って微分します。
ステップ 2.2.3
をかけます。
ステップ 2.3
の値を求めます。
タップして手順をさらに表示してください…
ステップ 2.3.1
に対して定数なので、に対するの微分係数はです。
ステップ 2.3.2
のとき、であるというべき乗則を使って微分します。
ステップ 2.3.3
をかけます。
ステップ 2.4
の値を求めます。
タップして手順をさらに表示してください…
ステップ 2.4.1
に対して定数なので、に対するの微分係数はです。
ステップ 2.4.2
のとき、であるというべき乗則を使って微分します。
ステップ 2.4.3
をかけます。
ステップ 3
関数の二次導関数を求めます。
タップして手順をさらに表示してください…
ステップ 3.1
総和則では、に関する積分はです。
ステップ 3.2
の値を求めます。
タップして手順をさらに表示してください…
ステップ 3.2.1
に対して定数なので、に対するの微分係数はです。
ステップ 3.2.2
のとき、であるというべき乗則を使って微分します。
ステップ 3.2.3
をかけます。
ステップ 3.3
の値を求めます。
タップして手順をさらに表示してください…
ステップ 3.3.1
に対して定数なので、に対するの微分係数はです。
ステップ 3.3.2
のとき、であるというべき乗則を使って微分します。
ステップ 3.3.3
をかけます。
ステップ 3.4
の値を求めます。
タップして手順をさらに表示してください…
ステップ 3.4.1
に対して定数なので、に対するの微分係数はです。
ステップ 3.4.2
のとき、であるというべき乗則を使って微分します。
ステップ 3.4.3
をかけます。
ステップ 3.5
定数の規則を使って微分します。
タップして手順をさらに表示してください…
ステップ 3.5.1
について定数なので、についての微分係数はです。
ステップ 3.5.2
をたし算します。
ステップ 4
微分係数をと等しくし、式を解いて関数の極大値と最小値を求めます。
ステップ 5
一次導関数を求めます。
タップして手順をさらに表示してください…
ステップ 5.1
一次導関数を求めます。
タップして手順をさらに表示してください…
ステップ 5.1.1
微分します。
タップして手順をさらに表示してください…
ステップ 5.1.1.1
総和則では、に関する積分はです。
ステップ 5.1.1.2
のとき、であるというべき乗則を使って微分します。
ステップ 5.1.2
の値を求めます。
タップして手順をさらに表示してください…
ステップ 5.1.2.1
に対して定数なので、に対するの微分係数はです。
ステップ 5.1.2.2
のとき、であるというべき乗則を使って微分します。
ステップ 5.1.2.3
をかけます。
ステップ 5.1.3
の値を求めます。
タップして手順をさらに表示してください…
ステップ 5.1.3.1
に対して定数なので、に対するの微分係数はです。
ステップ 5.1.3.2
のとき、であるというべき乗則を使って微分します。
ステップ 5.1.3.3
をかけます。
ステップ 5.1.4
の値を求めます。
タップして手順をさらに表示してください…
ステップ 5.1.4.1
に対して定数なので、に対するの微分係数はです。
ステップ 5.1.4.2
のとき、であるというべき乗則を使って微分します。
ステップ 5.1.4.3
をかけます。
ステップ 5.2
に関するの一次導関数はです。
ステップ 6
一次導関数をと等しくし、次に方程式を解きます。
タップして手順をさらに表示してください…
ステップ 6.1
一次導関数をに等しくします。
ステップ 6.2
方程式の左辺を因数分解します。
タップして手順をさらに表示してください…
ステップ 6.2.1
で因数分解します。
タップして手順をさらに表示してください…
ステップ 6.2.1.1
で因数分解します。
ステップ 6.2.1.2
で因数分解します。
ステップ 6.2.1.3
で因数分解します。
ステップ 6.2.1.4
で因数分解します。
ステップ 6.2.1.5
で因数分解します。
ステップ 6.2.1.6
で因数分解します。
ステップ 6.2.1.7
で因数分解します。
ステップ 6.2.2
有理根検定を用いてを因数分解します。
タップして手順をさらに表示してください…
ステップ 6.2.2.1
多項式関数が整数係数をもつならば、すべての有理数0はの形をもち、は定数の因数、は首位係数の因数です。
ステップ 6.2.2.2
のすべての組み合わせを求めます。これらは、多項式関数の可能な根です。
ステップ 6.2.2.3
を代入し、式を簡約します。この場合、式はに等しいので、は多項式の根です。
タップして手順をさらに表示してください…
ステップ 6.2.2.3.1
を多項式に代入します。
ステップ 6.2.2.3.2
乗します。
ステップ 6.2.2.3.3
乗します。
ステップ 6.2.2.3.4
をかけます。
ステップ 6.2.2.3.5
からを引きます。
ステップ 6.2.2.3.6
をかけます。
ステップ 6.2.2.3.7
をたし算します。
ステップ 6.2.2.3.8
からを引きます。
ステップ 6.2.2.4
は既知の根なので、多項式をで割り、多項式の商を求めます。この多項式は他の根を求めるために利用できます。
ステップ 6.2.2.5
で割ります。
タップして手順をさらに表示してください…
ステップ 6.2.2.5.1
多項式を分割します。すべての指数に項がない場合、の値の項を挿入します。
--+-
ステップ 6.2.2.5.2
被除数の最高次項を除数の最高次項で割ります。
--+-
ステップ 6.2.2.5.3
新しい商の項に除数を掛けます。
--+-
+-
ステップ 6.2.2.5.4
式は被除数から引く必要があるので、の符号をすべて変更します。
--+-
-+
ステップ 6.2.2.5.5
記号を変更した後、乗算多項式から最後の被除数を加えて新しい被除数を求めます。
--+-
-+
-
ステップ 6.2.2.5.6
元の被除数から次の項を現在の被除数に引き下げます。
--+-
-+
-+
ステップ 6.2.2.5.7
被除数の最高次項を除数の最高次項で割ります。
-
--+-
-+
-+
ステップ 6.2.2.5.8
新しい商の項に除数を掛けます。
-
--+-
-+
-+
-+
ステップ 6.2.2.5.9
式は被除数から引く必要があるので、の符号をすべて変更します。
-
--+-
-+
-+
+-
ステップ 6.2.2.5.10
記号を変更した後、乗算多項式から最後の被除数を加えて新しい被除数を求めます。
-
--+-
-+
-+
+-
+
ステップ 6.2.2.5.11
元の被除数から次の項を現在の被除数に引き下げます。
-
--+-
-+
-+
+-
+-
ステップ 6.2.2.5.12
被除数の最高次項を除数の最高次項で割ります。
-+
--+-
-+
-+
+-
+-
ステップ 6.2.2.5.13
新しい商の項に除数を掛けます。
-+
--+-
-+
-+
+-
+-
+-
ステップ 6.2.2.5.14
式は被除数から引く必要があるので、の符号をすべて変更します。
-+
--+-
-+
-+
+-
+-
-+
ステップ 6.2.2.5.15
記号を変更した後、乗算多項式から最後の被除数を加えて新しい被除数を求めます。
-+
--+-
-+
-+
+-
+-
-+
ステップ 6.2.2.5.16
余りがなので、最終回答は商です。
ステップ 6.2.2.6
を因数の集合として書き換えます。
ステップ 6.2.3
因数分解。
タップして手順をさらに表示してください…
ステップ 6.2.3.1
完全平方式を利用して因数分解します。
タップして手順をさらに表示してください…
ステップ 6.2.3.1.1
に書き換えます。
ステップ 6.2.3.1.2
中間項が、第1項と第3項で2乗される数の積の2倍であることを確認します。
ステップ 6.2.3.1.3
多項式を書き換えます。
ステップ 6.2.3.1.4
ならば、完全平方3項式を利用して因数分解します。
ステップ 6.2.3.2
不要な括弧を削除します。
ステップ 6.3
方程式の左辺の個々の因数がと等しいならば、式全体はと等しくなります。
ステップ 6.4
に等しくし、を解きます。
タップして手順をさらに表示してください…
ステップ 6.4.1
に等しいとします。
ステップ 6.4.2
方程式の両辺にを足します。
ステップ 6.5
に等しくし、を解きます。
タップして手順をさらに表示してください…
ステップ 6.5.1
に等しいとします。
ステップ 6.5.2
についてを解きます。
タップして手順をさらに表示してください…
ステップ 6.5.2.1
に等しいとします。
ステップ 6.5.2.2
方程式の両辺にを足します。
ステップ 6.6
最終解はを真にするすべての値です。
ステップ 7
微分係数が未定義になる値を求めます。
タップして手順をさらに表示してください…
ステップ 7.1
式の定義域は、式が未定義の場合を除き、すべての実数です。この場合、式が未定義になるような実数はありません。
ステップ 8
値を求める臨界点です。
ステップ 9
で二次導関数の値を求めます。二次導関数が正のとき、この値が極小値です。二次導関数が負の時、この値が極大値です。
ステップ 10
二次導関数の値を求めます。
タップして手順をさらに表示してください…
ステップ 10.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 10.1.1
1のすべての数の累乗は1です。
ステップ 10.1.2
をかけます。
ステップ 10.1.3
をかけます。
ステップ 10.2
足し算と引き算で簡約します。
タップして手順をさらに表示してください…
ステップ 10.2.1
からを引きます。
ステップ 10.2.2
をたし算します。
ステップ 11
は二次導関数の値が正であるため、極小値です。これは二次導関数テストと呼ばれます。
は極小値です
ステップ 12
のときy値を求めます。
タップして手順をさらに表示してください…
ステップ 12.1
式の変数で置換えます。
ステップ 12.2
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 12.2.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 12.2.1.1
1のすべての数の累乗は1です。
ステップ 12.2.1.2
1のすべての数の累乗は1です。
ステップ 12.2.1.3
をかけます。
ステップ 12.2.1.4
1のすべての数の累乗は1です。
ステップ 12.2.1.5
をかけます。
ステップ 12.2.1.6
をかけます。
ステップ 12.2.2
足し算と引き算で簡約します。
タップして手順をさらに表示してください…
ステップ 12.2.2.1
からを引きます。
ステップ 12.2.2.2
をたし算します。
ステップ 12.2.2.3
からを引きます。
ステップ 12.2.3
最終的な答えはです。
ステップ 13
で二次導関数の値を求めます。二次導関数が正のとき、この値が極小値です。二次導関数が負の時、この値が極大値です。
ステップ 14
二次導関数の値を求めます。
タップして手順をさらに表示してください…
ステップ 14.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 14.1.1
乗します。
ステップ 14.1.2
をかけます。
ステップ 14.1.3
をかけます。
ステップ 14.2
足し算と引き算で簡約します。
タップして手順をさらに表示してください…
ステップ 14.2.1
からを引きます。
ステップ 14.2.2
をたし算します。
ステップ 15
をもつ点が1点以上または未定義の二次導関数があるので、一次導関数検定を当てはめます。
タップして手順をさらに表示してください…
ステップ 15.1
一次導関数または未定義になる値の周囲で、を分離区間に分割します。
ステップ 15.2
一次導関数の区間からなどの任意の数を代入し、結果が負か正か確認します。
タップして手順をさらに表示してください…
ステップ 15.2.1
式の変数で置換えます。
ステップ 15.2.2
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 15.2.2.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 15.2.2.1.1
を正数乗し、を得ます。
ステップ 15.2.2.1.2
をかけます。
ステップ 15.2.2.1.3
を正数乗し、を得ます。
ステップ 15.2.2.1.4
をかけます。
ステップ 15.2.2.1.5
をかけます。
ステップ 15.2.2.2
足し算と引き算で簡約します。
タップして手順をさらに表示してください…
ステップ 15.2.2.2.1
をたし算します。
ステップ 15.2.2.2.2
をたし算します。
ステップ 15.2.2.2.3
からを引きます。
ステップ 15.2.2.3
最終的な答えはです。
ステップ 15.3
一次導関数の区間からなどの任意の数を代入し、結果が負か正か確認します。
タップして手順をさらに表示してください…
ステップ 15.3.1
式の変数で置換えます。
ステップ 15.3.2
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 15.3.2.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 15.3.2.1.1
乗します。
ステップ 15.3.2.1.2
をかけます。
ステップ 15.3.2.1.3
乗します。
ステップ 15.3.2.1.4
をかけます。
ステップ 15.3.2.1.5
をかけます。
ステップ 15.3.2.2
足し算と引き算で簡約します。
タップして手順をさらに表示してください…
ステップ 15.3.2.2.1
からを引きます。
ステップ 15.3.2.2.2
をたし算します。
ステップ 15.3.2.2.3
からを引きます。
ステップ 15.3.2.3
最終的な答えはです。
ステップ 15.4
一次導関数の区間からなどの任意の数を代入し、結果が負か正か確認します。
タップして手順をさらに表示してください…
ステップ 15.4.1
式の変数で置換えます。
ステップ 15.4.2
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 15.4.2.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 15.4.2.1.1
乗します。
ステップ 15.4.2.1.2
をかけます。
ステップ 15.4.2.1.3
乗します。
ステップ 15.4.2.1.4
をかけます。
ステップ 15.4.2.1.5
をかけます。
ステップ 15.4.2.2
足し算と引き算で簡約します。
タップして手順をさらに表示してください…
ステップ 15.4.2.2.1
からを引きます。
ステップ 15.4.2.2.2
をたし算します。
ステップ 15.4.2.2.3
からを引きます。
ステップ 15.4.2.3
最終的な答えはです。
ステップ 15.5
の周囲で一次導関数の符号が負から正に変化したので、は極小値です。
は極小値です
ステップ 15.6
の周囲で一次導関数の符号が変化しなかったので、これは極大値または極小値ではありません。
極大値または極小値ではありません
ステップ 15.7
の極値です。
は極小値です
は極小値です
ステップ 16