問題を入力...
微分積分 例
ステップ 1
ステップ 1.1
一次導関数を求めます。
ステップ 1.1.1
を利用し、をに書き換えます。
ステップ 1.1.2
およびのとき、はであるという連鎖律を使って微分します。
ステップ 1.1.2.1
連鎖律を当てはめるために、をとします。
ステップ 1.1.2.2
のとき、はであるというべき乗則を使って微分します。
ステップ 1.1.2.3
のすべての発生をで置き換えます。
ステップ 1.1.3
を公分母のある分数として書くために、を掛けます。
ステップ 1.1.4
とをまとめます。
ステップ 1.1.5
公分母の分子をまとめます。
ステップ 1.1.6
分子を簡約します。
ステップ 1.1.6.1
にをかけます。
ステップ 1.1.6.2
からを引きます。
ステップ 1.1.7
分数をまとめます。
ステップ 1.1.7.1
分数の前に負数を移動させます。
ステップ 1.1.7.2
とをまとめます。
ステップ 1.1.7.3
負の指数法則を利用してを分母に移動させます。
ステップ 1.1.8
総和則では、のに関する積分はです。
ステップ 1.1.9
のとき、はであるというべき乗則を使って微分します。
ステップ 1.1.10
はについて定数なので、についての微分係数はです。
ステップ 1.1.11
項を簡約します。
ステップ 1.1.11.1
とをたし算します。
ステップ 1.1.11.2
とをまとめます。
ステップ 1.1.11.3
とをまとめます。
ステップ 1.1.11.4
共通因数を約分します。
ステップ 1.1.11.5
式を書き換えます。
ステップ 1.2
に関するの一次導関数はです。
ステップ 2
ステップ 2.1
一次導関数をに等しくします。
ステップ 2.2
分子を0に等しくします。
ステップ 3
ステップ 3.1
式の定義域は、式が未定義の場合を除き、すべての実数です。この場合、式が未定義になるような実数はありません。
ステップ 4
ステップ 4.1
での値を求めます。
ステップ 4.1.1
をに代入します。
ステップ 4.1.2
簡約します。
ステップ 4.1.2.1
を正数乗し、を得ます。
ステップ 4.1.2.2
とをたし算します。
ステップ 4.1.2.3
をに書き換えます。
ステップ 4.1.2.3.1
をで因数分解します。
ステップ 4.1.2.3.2
をに書き換えます。
ステップ 4.1.2.4
累乗根の下から項を取り出します。
ステップ 4.2
点のすべてを一覧にします。
ステップ 5