問題を入力...
微分積分 例
ステップ 1
がに近づいたら、極限で極限の法則の和を利用して分解します。
ステップ 2
がに近づいたら、極限で極限の商の法則を利用して極限を分割します。
ステップ 3
がに近づくと定数であるの極限値を求めます。
ステップ 4
がに近づいたら、極限で極限の法則の和を利用して分解します。
ステップ 5
がに近づくと定数であるの極限値を求めます。
ステップ 6
ステップ 6.1
分子に分母の逆数を掛けます。
ステップ 6.2
にをかけます。
ステップ 7
の項はに対して一定なので、極限の外に移動させます。
ステップ 8
ステップ 8.1
をに代入し、の極限値を求めます。
ステップ 8.2
をに代入し、の極限値を求めます。
ステップ 9
ステップ 9.1
各項を簡約します。
ステップ 9.1.1
とをたし算します。
ステップ 9.1.2
を掛けます。
ステップ 9.1.2.1
にをかけます。
ステップ 9.1.2.2
にをかけます。
ステップ 9.2
とをたし算します。
ステップ 10
結果は複数の形で表すことができます。
完全形:
10進法形式: