問題を入力...
微分積分 例
ステップ 1
がに近づいたら、極限で極限の法則の和を利用して分解します。
ステップ 2
正弦が連続なので、極限を三角関数の中に移動させます。
ステップ 3
がに近づいたら、極限で極限の法則の和を利用して分解します。
ステップ 4
がに近づくと定数であるの極限値を求めます。
ステップ 5
余弦が連続なので、極限を三角関数の中に移動させます。
ステップ 6
ステップ 6.1
をに代入し、の極限値を求めます。
ステップ 6.2
をに代入し、の極限値を求めます。
ステップ 7
ステップ 7.1
各項を簡約します。
ステップ 7.1.1
とをたし算します。
ステップ 7.1.2
角度が以上より小さくなるまでの回転を戻します。
ステップ 7.1.3
の厳密値はです。
ステップ 7.1.4
の厳密値はです。
ステップ 7.2
とをたし算します。