問題を入力...
微分積分 例
ステップ 1
ステップ 1.1
分子と分母の極限値を求めます。
ステップ 1.1.1
分子と分母の極限値をとります。
ステップ 1.1.2
分子の極限値を求めます。
ステップ 1.1.2.1
極限を求めます。
ステップ 1.1.2.1.1
対数の内側に極限を移動させます。
ステップ 1.1.2.1.2
極限べき乗則を利用して、指数をから極限値外側に移動させます。
ステップ 1.1.2.2
をに代入し、の極限値を求めます。
ステップ 1.1.2.3
答えを簡約します。
ステップ 1.1.2.3.1
1のすべての数の累乗は1です。
ステップ 1.1.2.3.2
の自然対数はです。
ステップ 1.1.3
分母の極限値を求めます。
ステップ 1.1.3.1
極限を求めます。
ステップ 1.1.3.1.1
がに近づいたら、極限で極限の法則の和を利用して分解します。
ステップ 1.1.3.1.2
極限べき乗則を利用して、指数をから極限値外側に移動させます。
ステップ 1.1.3.1.3
がに近づくと定数であるの極限値を求めます。
ステップ 1.1.3.2
をに代入し、の極限値を求めます。
ステップ 1.1.3.3
答えを簡約します。
ステップ 1.1.3.3.1
各項を簡約します。
ステップ 1.1.3.3.1.1
1のすべての数の累乗は1です。
ステップ 1.1.3.3.1.2
にをかけます。
ステップ 1.1.3.3.2
からを引きます。
ステップ 1.1.3.3.3
による除算を含む式です。式は未定義です。
未定義
ステップ 1.1.3.4
による除算を含む式です。式は未定義です。
未定義
ステップ 1.1.4
による除算を含む式です。式は未定義です。
未定義
ステップ 1.2
は不定形があるので、ロピタルの定理を当てはめます。ロピタルの定理は、関数の商の極限は微分係数の商の極限に等しいとしています。
ステップ 1.3
分子と分母の微分係数を求めます。
ステップ 1.3.1
分母と分子を微分します。
ステップ 1.3.2
およびのとき、はであるという連鎖律を使って微分します。
ステップ 1.3.2.1
連鎖律を当てはめるために、をとします。
ステップ 1.3.2.2
に関するの微分係数はです。
ステップ 1.3.2.3
のすべての発生をで置き換えます。
ステップ 1.3.3
のとき、はであるというべき乗則を使って微分します。
ステップ 1.3.4
とをまとめます。
ステップ 1.3.5
とをまとめます。
ステップ 1.3.6
との共通因数を約分します。
ステップ 1.3.6.1
をで因数分解します。
ステップ 1.3.6.2
共通因数を約分します。
ステップ 1.3.6.2.1
をで因数分解します。
ステップ 1.3.6.2.2
共通因数を約分します。
ステップ 1.3.6.2.3
式を書き換えます。
ステップ 1.3.7
総和則では、のに関する積分はです。
ステップ 1.3.8
のとき、はであるというべき乗則を使って微分します。
ステップ 1.3.9
はについて定数なので、についての微分係数はです。
ステップ 1.3.10
とをたし算します。
ステップ 1.4
分子に分母の逆数を掛けます。
ステップ 1.5
因数をまとめます。
ステップ 1.5.1
にをかけます。
ステップ 1.5.2
を乗します。
ステップ 1.5.3
を乗します。
ステップ 1.5.4
べき乗則を利用して指数を組み合わせます。
ステップ 1.5.5
とをたし算します。
ステップ 1.6
の共通因数を約分します。
ステップ 1.6.1
共通因数を約分します。
ステップ 1.6.2
式を書き換えます。
ステップ 2
ステップ 2.1
がに近づいたら、極限で極限の商の法則を利用して極限を分割します。
ステップ 2.2
がに近づくと定数であるの極限値を求めます。
ステップ 2.3
極限べき乗則を利用して、指数をから極限値外側に移動させます。
ステップ 3
をに代入し、の極限値を求めます。
ステップ 4
ステップ 4.1
1のすべての数の累乗は1です。
ステップ 4.2
をで割ります。