問題を入力...
微分積分 例
ステップ 1
ステップ 1.1
対数の独立変数を0とします。
ステップ 1.2
について解きます。
ステップ 1.2.1
方程式の両辺を乗し、左辺の分数指数を消去します。
ステップ 1.2.2
指数を簡約します。
ステップ 1.2.2.1
左辺を簡約します。
ステップ 1.2.2.1.1
を簡約します。
ステップ 1.2.2.1.1.1
の指数を掛けます。
ステップ 1.2.2.1.1.1.1
べき乗則を当てはめて、指数をかけ算します。
ステップ 1.2.2.1.1.1.2
の共通因数を約分します。
ステップ 1.2.2.1.1.1.2.1
共通因数を約分します。
ステップ 1.2.2.1.1.1.2.2
式を書き換えます。
ステップ 1.2.2.1.1.2
簡約します。
ステップ 1.2.2.2
右辺を簡約します。
ステップ 1.2.2.2.1
を正数乗し、を得ます。
ステップ 1.3
垂直漸近線はで発生します。
垂直漸近線:
垂直漸近線:
ステップ 2
ステップ 2.1
式の変数をで置換えます。
ステップ 2.2
結果を簡約します。
ステップ 2.2.1
の自然対数はです。
ステップ 2.2.2
にをかけます。
ステップ 2.2.3
最終的な答えはです。
ステップ 2.3
を10進数に変換します。
ステップ 3
ステップ 3.1
式の変数をで置換えます。
ステップ 3.2
結果を簡約します。
ステップ 3.2.1
対数の中のを移動させてを簡約します。
ステップ 3.2.2
最終的な答えはです。
ステップ 3.3
を10進数に変換します。
ステップ 4
ステップ 4.1
式の変数をで置換えます。
ステップ 4.2
結果を簡約します。
ステップ 4.2.1
対数の中のを移動させてを簡約します。
ステップ 4.2.2
最終的な答えはです。
ステップ 4.3
を10進数に変換します。
ステップ 5
対数関数は、における垂直漸近線と点を利用してグラフにすることができます。
垂直漸近線:
ステップ 6