問題を入力...
微分積分 例
ステップ 1
方程式の左辺の個々の因数がと等しいならば、式全体はと等しくなります。
ステップ 2
ステップ 2.1
がに等しいとします。
ステップ 2.2
についてを解きます。
ステップ 2.2.1
方程式の両辺の自然対数をとり、指数から変数を削除します。
ステップ 2.2.2
が未定義なので、方程式は解くことができません。
未定義
ステップ 2.2.3
の解はありません
解がありません
解がありません
解がありません
ステップ 3
ステップ 3.1
がに等しいとします。
ステップ 3.2
についてを解きます。
ステップ 3.2.1
方程式の両辺にを足します。
ステップ 3.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
ステップ 3.2.3
を簡約します。
ステップ 3.2.3.1
をに書き換えます。
ステップ 3.2.3.2
正の実数と仮定して、累乗根の下から項を取り出します。
ステップ 3.2.4
完全解は、解の正と負の部分の両方の計算結果です。
ステップ 3.2.4.1
まず、の正の数を利用し、1番目の解を求めます。
ステップ 3.2.4.2
次に、の負の値を利用し。2番目の解を求めます。
ステップ 3.2.4.3
完全解は、解の正と負の部分の両方の計算結果です。
ステップ 4
最終解はを真にするすべての値です。