問題を入力...
微分積分 例
ステップ 1
ステップ 1.1
を乗します。
ステップ 1.2
の共通因数を約分します。
ステップ 1.2.1
をで因数分解します。
ステップ 1.2.2
をで因数分解します。
ステップ 1.2.3
共通因数を約分します。
ステップ 1.2.4
式を書き換えます。
ステップ 2
方程式の両辺からを引きます。
ステップ 3
ステップ 3.1
をで因数分解します。
ステップ 3.1.1
をで因数分解します。
ステップ 3.1.2
をで因数分解します。
ステップ 3.1.3
をで因数分解します。
ステップ 3.2
をに書き換えます。
ステップ 3.3
をに書き換えます。
ステップ 3.4
両項とも完全立方なので、立方の差の公式を利用して、因数分解します。このとき、であり、です。
ステップ 3.5
因数分解。
ステップ 3.5.1
簡約します。
ステップ 3.5.1.1
1のすべての数の累乗は1です。
ステップ 3.5.1.2
にをかけます。
ステップ 3.5.1.3
積の法則をに当てはめます。
ステップ 3.5.1.4
を乗します。
ステップ 3.5.2
不要な括弧を削除します。
ステップ 4
方程式の左辺の個々の因数がと等しいならば、式全体はと等しくなります。
ステップ 5
がに等しいとします。
ステップ 6
ステップ 6.1
がに等しいとします。
ステップ 6.2
についてを解きます。
ステップ 6.2.1
方程式の両辺からを引きます。
ステップ 6.2.2
方程式の両辺にを掛けます。
ステップ 6.2.3
方程式の両辺を簡約します。
ステップ 6.2.3.1
左辺を簡約します。
ステップ 6.2.3.1.1
を簡約します。
ステップ 6.2.3.1.1.1
の共通因数を約分します。
ステップ 6.2.3.1.1.1.1
の先頭の負を分子に移動させます。
ステップ 6.2.3.1.1.1.2
をで因数分解します。
ステップ 6.2.3.1.1.1.3
共通因数を約分します。
ステップ 6.2.3.1.1.1.4
式を書き換えます。
ステップ 6.2.3.1.1.2
掛け算します。
ステップ 6.2.3.1.1.2.1
にをかけます。
ステップ 6.2.3.1.1.2.2
にをかけます。
ステップ 6.2.3.2
右辺を簡約します。
ステップ 6.2.3.2.1
にをかけます。
ステップ 7
ステップ 7.1
がに等しいとします。
ステップ 7.2
についてを解きます。
ステップ 7.2.1
両辺に最小公分母を掛け、次に簡約します。
ステップ 7.2.1.1
分配則を当てはめます。
ステップ 7.2.1.2
簡約します。
ステップ 7.2.1.2.1
にをかけます。
ステップ 7.2.1.2.2
の共通因数を約分します。
ステップ 7.2.1.2.2.1
をで因数分解します。
ステップ 7.2.1.2.2.2
共通因数を約分します。
ステップ 7.2.1.2.2.3
式を書き換えます。
ステップ 7.2.1.2.3
の共通因数を約分します。
ステップ 7.2.1.2.3.1
共通因数を約分します。
ステップ 7.2.1.2.3.2
式を書き換えます。
ステップ 7.2.1.3
を移動させます。
ステップ 7.2.1.4
とを並べ替えます。
ステップ 7.2.2
二次方程式の解の公式を利用して解を求めます。
ステップ 7.2.3
、、およびを二次方程式の解の公式に代入し、の値を求めます。
ステップ 7.2.4
簡約します。
ステップ 7.2.4.1
分子を簡約します。
ステップ 7.2.4.1.1
を乗します。
ステップ 7.2.4.1.2
を掛けます。
ステップ 7.2.4.1.2.1
にをかけます。
ステップ 7.2.4.1.2.2
にをかけます。
ステップ 7.2.4.1.3
からを引きます。
ステップ 7.2.4.1.4
をに書き換えます。
ステップ 7.2.4.1.5
をに書き換えます。
ステップ 7.2.4.1.6
をに書き換えます。
ステップ 7.2.4.1.7
をに書き換えます。
ステップ 7.2.4.1.7.1
をで因数分解します。
ステップ 7.2.4.1.7.2
をに書き換えます。
ステップ 7.2.4.1.8
累乗根の下から項を取り出します。
ステップ 7.2.4.1.9
をの左に移動させます。
ステップ 7.2.4.2
にをかけます。
ステップ 7.2.4.3
を簡約します。
ステップ 7.2.5
最終的な答えは両方の解の組み合わせです。
ステップ 8
最終解はを真にするすべての値です。