問題を入力...
微分積分 例
ステップ 1
はに対して定数なので、に対するの微分係数はです。
ステップ 2
およびのとき、はであるという商の法則を使って微分します。
ステップ 3
ステップ 3.1
連鎖律を当てはめるために、をとします。
ステップ 3.2
=のとき、はであるという指数法則を使って微分します。
ステップ 3.3
のすべての発生をで置き換えます。
ステップ 4
ステップ 4.1
はに対して定数なので、に対するの微分係数はです。
ステップ 4.2
のとき、はであるというべき乗則を使って微分します。
ステップ 4.3
式を簡約します。
ステップ 4.3.1
にをかけます。
ステップ 4.3.2
をの左に移動させます。
ステップ 4.4
総和則では、のに関する積分はです。
ステップ 4.5
はに対して定数なので、に対するの微分係数はです。
ステップ 4.6
のとき、はであるというべき乗則を使って微分します。
ステップ 4.7
にをかけます。
ステップ 4.8
はについて定数なので、についての微分係数はです。
ステップ 4.9
分数をまとめます。
ステップ 4.9.1
とをたし算します。
ステップ 4.9.2
にをかけます。
ステップ 4.9.3
とをまとめます。
ステップ 5
ステップ 5.1
分配則を当てはめます。
ステップ 5.2
分配則を当てはめます。
ステップ 5.3
分配則を当てはめます。
ステップ 5.4
分子を簡約します。
ステップ 5.4.1
各項を簡約します。
ステップ 5.4.1.1
にをかけます。
ステップ 5.4.1.2
にをかけます。
ステップ 5.4.1.3
にをかけます。
ステップ 5.4.1.4
にをかけます。
ステップ 5.4.1.5
にをかけます。
ステップ 5.4.2
からを引きます。
ステップ 5.5
項を並べ替えます。
ステップ 5.6
をで因数分解します。
ステップ 5.6.1
をで因数分解します。
ステップ 5.6.2
をで因数分解します。
ステップ 5.6.3
をで因数分解します。