微分積分 例

x切片とy切片を求める f(x)=(1-x)e^x
ステップ 1
x切片を求めます。
タップして手順をさらに表示してください…
ステップ 1.1
x切片を求めるために、に代入しを解きます。
ステップ 1.2
方程式を解きます。
タップして手順をさらに表示してください…
ステップ 1.2.1
方程式をとして書き換えます。
ステップ 1.2.2
方程式の左辺の個々の因数がと等しいならば、式全体はと等しくなります。
ステップ 1.2.3
に等しくし、を解きます。
タップして手順をさらに表示してください…
ステップ 1.2.3.1
に等しいとします。
ステップ 1.2.3.2
についてを解きます。
タップして手順をさらに表示してください…
ステップ 1.2.3.2.1
方程式の両辺からを引きます。
ステップ 1.2.3.2.2
の各項をで割り、簡約します。
タップして手順をさらに表示してください…
ステップ 1.2.3.2.2.1
の各項をで割ります。
ステップ 1.2.3.2.2.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 1.2.3.2.2.2.1
2つの負の値を割ると正の値になります。
ステップ 1.2.3.2.2.2.2
で割ります。
ステップ 1.2.3.2.2.3
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 1.2.3.2.2.3.1
で割ります。
ステップ 1.2.4
に等しくし、を解きます。
タップして手順をさらに表示してください…
ステップ 1.2.4.1
に等しいとします。
ステップ 1.2.4.2
についてを解きます。
タップして手順をさらに表示してください…
ステップ 1.2.4.2.1
方程式の両辺の自然対数をとり、指数から変数を削除します。
ステップ 1.2.4.2.2
が未定義なので、方程式は解くことができません。
未定義
ステップ 1.2.4.2.3
の解はありません
解がありません
解がありません
解がありません
ステップ 1.2.5
最終解はを真にするすべての値です。
ステップ 1.3
点形式のx切片です。
x切片:
x切片:
ステップ 2
y切片を求めます。
タップして手順をさらに表示してください…
ステップ 2.1
y切片を求めるために、に代入しを解きます。
ステップ 2.2
方程式を解きます。
タップして手順をさらに表示してください…
ステップ 2.2.1
括弧を削除します。
ステップ 2.2.2
を簡約します。
タップして手順をさらに表示してください…
ステップ 2.2.2.1
からを引きます。
ステップ 2.2.2.2
をかけます。
ステップ 2.2.2.3
にべき乗するものはとなります。
ステップ 2.3
点形式のy切片です。
y切片:
y切片:
ステップ 3
交点を一覧にします。
x切片:
y切片:
ステップ 4