問題を入力...
微分積分 例
ステップ 1
ステップ 1.1
x切片を求めるために、をに代入しを解きます。
ステップ 1.2
方程式を解きます。
ステップ 1.2.1
方程式をとして書き換えます。
ステップ 1.2.2
方程式の左辺の個々の因数がと等しいならば、式全体はと等しくなります。
ステップ 1.2.3
をに等しくし、を解きます。
ステップ 1.2.3.1
がに等しいとします。
ステップ 1.2.3.2
方程式の両辺にを足します。
ステップ 1.2.4
をに等しくし、を解きます。
ステップ 1.2.4.1
がに等しいとします。
ステップ 1.2.4.2
についてを解きます。
ステップ 1.2.4.2.1
二次方程式の解の公式を利用して解を求めます。
ステップ 1.2.4.2.2
、、およびを二次方程式の解の公式に代入し、の値を求めます。
ステップ 1.2.4.2.3
簡約します。
ステップ 1.2.4.2.3.1
分子を簡約します。
ステップ 1.2.4.2.3.1.1
を乗します。
ステップ 1.2.4.2.3.1.2
を掛けます。
ステップ 1.2.4.2.3.1.2.1
にをかけます。
ステップ 1.2.4.2.3.1.2.2
にをかけます。
ステップ 1.2.4.2.3.1.3
とをたし算します。
ステップ 1.2.4.2.3.1.4
をに書き換えます。
ステップ 1.2.4.2.3.1.4.1
をで因数分解します。
ステップ 1.2.4.2.3.1.4.2
をに書き換えます。
ステップ 1.2.4.2.3.1.5
累乗根の下から項を取り出します。
ステップ 1.2.4.2.3.2
にをかけます。
ステップ 1.2.4.2.3.3
を簡約します。
ステップ 1.2.4.2.4
式を簡約し、の部の値を求めます。
ステップ 1.2.4.2.4.1
分子を簡約します。
ステップ 1.2.4.2.4.1.1
を乗します。
ステップ 1.2.4.2.4.1.2
を掛けます。
ステップ 1.2.4.2.4.1.2.1
にをかけます。
ステップ 1.2.4.2.4.1.2.2
にをかけます。
ステップ 1.2.4.2.4.1.3
とをたし算します。
ステップ 1.2.4.2.4.1.4
をに書き換えます。
ステップ 1.2.4.2.4.1.4.1
をで因数分解します。
ステップ 1.2.4.2.4.1.4.2
をに書き換えます。
ステップ 1.2.4.2.4.1.5
累乗根の下から項を取り出します。
ステップ 1.2.4.2.4.2
にをかけます。
ステップ 1.2.4.2.4.3
を簡約します。
ステップ 1.2.4.2.4.4
をに変更します。
ステップ 1.2.4.2.5
式を簡約し、の部の値を求めます。
ステップ 1.2.4.2.5.1
分子を簡約します。
ステップ 1.2.4.2.5.1.1
を乗します。
ステップ 1.2.4.2.5.1.2
を掛けます。
ステップ 1.2.4.2.5.1.2.1
にをかけます。
ステップ 1.2.4.2.5.1.2.2
にをかけます。
ステップ 1.2.4.2.5.1.3
とをたし算します。
ステップ 1.2.4.2.5.1.4
をに書き換えます。
ステップ 1.2.4.2.5.1.4.1
をで因数分解します。
ステップ 1.2.4.2.5.1.4.2
をに書き換えます。
ステップ 1.2.4.2.5.1.5
累乗根の下から項を取り出します。
ステップ 1.2.4.2.5.2
にをかけます。
ステップ 1.2.4.2.5.3
を簡約します。
ステップ 1.2.4.2.5.4
をに変更します。
ステップ 1.2.4.2.6
最終的な答えは両方の解の組み合わせです。
ステップ 1.2.5
最終解はを真にするすべての値です。
ステップ 1.3
点形式のx切片です。
x切片:
x切片:
ステップ 2
ステップ 2.1
y切片を求めるために、をに代入しを解きます。
ステップ 2.2
方程式を解きます。
ステップ 2.2.1
括弧を削除します。
ステップ 2.2.2
括弧を削除します。
ステップ 2.2.3
括弧を削除します。
ステップ 2.2.4
を簡約します。
ステップ 2.2.4.1
からを引きます。
ステップ 2.2.4.2
各項を簡約します。
ステップ 2.2.4.2.1
を正数乗し、を得ます。
ステップ 2.2.4.2.2
にをかけます。
ステップ 2.2.4.3
式を簡約します。
ステップ 2.2.4.3.1
とをたし算します。
ステップ 2.2.4.3.2
からを引きます。
ステップ 2.2.4.3.3
にをかけます。
ステップ 2.3
点形式のy切片です。
y切片:
y切片:
ステップ 3
交点を一覧にします。
x切片:
y切片:
ステップ 4