微分積分 例

Найти производную - d/dx y=(x^2-2x+1)/(x^2+5)
ステップ 1
およびのとき、であるという商の法則を使って微分します。
ステップ 2
微分します。
タップして手順をさらに表示してください…
ステップ 2.1
総和則では、に関する積分はです。
ステップ 2.2
のとき、であるというべき乗則を使って微分します。
ステップ 2.3
に対して定数なので、に対するの微分係数はです。
ステップ 2.4
のとき、であるというべき乗則を使って微分します。
ステップ 2.5
をかけます。
ステップ 2.6
について定数なので、についての微分係数はです。
ステップ 2.7
をたし算します。
ステップ 2.8
総和則では、に関する積分はです。
ステップ 2.9
のとき、であるというべき乗則を使って微分します。
ステップ 2.10
について定数なので、についての微分係数はです。
ステップ 2.11
式を簡約します。
タップして手順をさらに表示してください…
ステップ 2.11.1
をたし算します。
ステップ 2.11.2
をかけます。
ステップ 3
簡約します。
タップして手順をさらに表示してください…
ステップ 3.1
分配則を当てはめます。
ステップ 3.2
分配則を当てはめます。
ステップ 3.3
分子を簡約します。
タップして手順をさらに表示してください…
ステップ 3.3.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 3.3.1.1
分配法則(FOIL法)を使ってを展開します。
タップして手順をさらに表示してください…
ステップ 3.3.1.1.1
分配則を当てはめます。
ステップ 3.3.1.1.2
分配則を当てはめます。
ステップ 3.3.1.1.3
分配則を当てはめます。
ステップ 3.3.1.2
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 3.3.1.2.1
積の可換性を利用して書き換えます。
ステップ 3.3.1.2.2
指数を足してを掛けます。
タップして手順をさらに表示してください…
ステップ 3.3.1.2.2.1
を移動させます。
ステップ 3.3.1.2.2.2
をかけます。
タップして手順をさらに表示してください…
ステップ 3.3.1.2.2.2.1
乗します。
ステップ 3.3.1.2.2.2.2
べき乗則を利用して指数を組み合わせます。
ステップ 3.3.1.2.2.3
をたし算します。
ステップ 3.3.1.2.3
の左に移動させます。
ステップ 3.3.1.2.4
をかけます。
ステップ 3.3.1.2.5
をかけます。
ステップ 3.3.1.3
指数を足してを掛けます。
タップして手順をさらに表示してください…
ステップ 3.3.1.3.1
を移動させます。
ステップ 3.3.1.3.2
をかけます。
タップして手順をさらに表示してください…
ステップ 3.3.1.3.2.1
乗します。
ステップ 3.3.1.3.2.2
べき乗則を利用して指数を組み合わせます。
ステップ 3.3.1.3.3
をたし算します。
ステップ 3.3.1.4
指数を足してを掛けます。
タップして手順をさらに表示してください…
ステップ 3.3.1.4.1
を移動させます。
ステップ 3.3.1.4.2
をかけます。
ステップ 3.3.1.5
をかけます。
ステップ 3.3.1.6
をかけます。
ステップ 3.3.2
の反対側の項を組み合わせます。
タップして手順をさらに表示してください…
ステップ 3.3.2.1
からを引きます。
ステップ 3.3.2.2
をたし算します。
ステップ 3.3.3
をたし算します。
ステップ 3.3.4
からを引きます。
ステップ 3.4
分子を簡約します。
タップして手順をさらに表示してください…
ステップ 3.4.1
で因数分解します。
タップして手順をさらに表示してください…
ステップ 3.4.1.1
で因数分解します。
ステップ 3.4.1.2
で因数分解します。
ステップ 3.4.1.3
で因数分解します。
ステップ 3.4.1.4
で因数分解します。
ステップ 3.4.1.5
で因数分解します。
ステップ 3.4.2
たすき掛けを利用してを因数分解します。
タップして手順をさらに表示してください…
ステップ 3.4.2.1
の形式を考えます。積がで和がである整数の組を求めます。このとき、その積がで、その和がです。
ステップ 3.4.2.2
この整数を利用して因数分解の形を書きます。