問題を入力...
微分積分 例
ステップ 1
ステップ 1.1
交点、と原点をもつ平面に三角形を書きます。そうすると、は正のx軸と、原点から始まってを通る半直線の間の角です。したがって、はです。
ステップ 1.2
をで因数分解します。
ステップ 1.3
式を簡約します。
ステップ 1.3.1
積の法則をに当てはめます。
ステップ 1.3.2
を乗します。
ステップ 1.3.3
にをかけます。
ステップ 1.3.4
を利用し、をに書き換えます。
ステップ 2
ステップ 2.1
連鎖律を当てはめるために、をとします。
ステップ 2.2
のとき、はであるというべき乗則を使って微分します。
ステップ 2.3
のすべての発生をで置き換えます。
ステップ 3
を公分母のある分数として書くために、を掛けます。
ステップ 4
とをまとめます。
ステップ 5
公分母の分子をまとめます。
ステップ 6
ステップ 6.1
にをかけます。
ステップ 6.2
からを引きます。
ステップ 7
ステップ 7.1
分数の前に負数を移動させます。
ステップ 7.2
とをまとめます。
ステップ 7.3
負の指数法則を利用してを分母に移動させます。
ステップ 8
総和則では、のに関する積分はです。
ステップ 9
はについて定数なので、についての微分係数はです。
ステップ 10
とをたし算します。
ステップ 11
はに対して定数なので、に対するの微分係数はです。
ステップ 12
ステップ 12.1
とをまとめます。
ステップ 12.2
をで因数分解します。
ステップ 13
ステップ 13.1
をで因数分解します。
ステップ 13.2
共通因数を約分します。
ステップ 13.3
式を書き換えます。
ステップ 14
分数の前に負数を移動させます。
ステップ 15
のとき、はであるというべき乗則を使って微分します。
ステップ 16
ステップ 16.1
にをかけます。
ステップ 16.2
とをまとめます。
ステップ 16.3
にをかけます。
ステップ 16.4
とをまとめます。
ステップ 16.5
分数の前に負数を移動させます。