微分積分 例

区間表記への変換 (4-3x-x^2)/(x^2-25)>0
ステップ 1
各因数をに等しくして解くことで、式が負から正に切り替わるすべての値を求めます。
ステップ 2
方程式の左辺を因数分解します。
タップして手順をさらに表示してください…
ステップ 2.1
で因数分解します。
タップして手順をさらに表示してください…
ステップ 2.1.1
式を並べ替えます。
タップして手順をさらに表示してください…
ステップ 2.1.1.1
を移動させます。
ステップ 2.1.1.2
を並べ替えます。
ステップ 2.1.2
で因数分解します。
ステップ 2.1.3
で因数分解します。
ステップ 2.1.4
に書き換えます。
ステップ 2.1.5
で因数分解します。
ステップ 2.1.6
で因数分解します。
ステップ 2.2
因数分解。
タップして手順をさらに表示してください…
ステップ 2.2.1
たすき掛けを利用してを因数分解します。
タップして手順をさらに表示してください…
ステップ 2.2.1.1
の形式を考えます。積がで和がである整数の組を求めます。このとき、その積がで、その和がです。
ステップ 2.2.1.2
この整数を利用して因数分解の形を書きます。
ステップ 2.2.2
不要な括弧を削除します。
ステップ 3
方程式の左辺の個々の因数がと等しいならば、式全体はと等しくなります。
ステップ 4
に等しくし、を解きます。
タップして手順をさらに表示してください…
ステップ 4.1
に等しいとします。
ステップ 4.2
方程式の両辺にを足します。
ステップ 5
に等しくし、を解きます。
タップして手順をさらに表示してください…
ステップ 5.1
に等しいとします。
ステップ 5.2
方程式の両辺からを引きます。
ステップ 6
最終解はを真にするすべての値です。
ステップ 7
方程式の両辺にを足します。
ステップ 8
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
ステップ 9
を簡約します。
タップして手順をさらに表示してください…
ステップ 9.1
に書き換えます。
ステップ 9.2
正の実数と仮定して、累乗根の下から項を取り出します。
ステップ 10
完全解は、解の正と負の部分の両方の計算結果です。
タップして手順をさらに表示してください…
ステップ 10.1
まず、の正の数を利用し、1番目の解を求めます。
ステップ 10.2
次に、の負の値を利用し。2番目の解を求めます。
ステップ 10.3
完全解は、解の正と負の部分の両方の計算結果です。
ステップ 11
各因数について解き、絶対値式が負から正になる値を求めます。
ステップ 12
解をまとめます。
ステップ 13
の定義域を求めます。
タップして手順をさらに表示してください…
ステップ 13.1
の分母をに等しいとして、式が未定義である場所を求めます。
ステップ 13.2
について解きます。
タップして手順をさらに表示してください…
ステップ 13.2.1
方程式の両辺にを足します。
ステップ 13.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
ステップ 13.2.3
を簡約します。
タップして手順をさらに表示してください…
ステップ 13.2.3.1
に書き換えます。
ステップ 13.2.3.2
正の実数と仮定して、累乗根の下から項を取り出します。
ステップ 13.2.4
完全解は、解の正と負の部分の両方の計算結果です。
タップして手順をさらに表示してください…
ステップ 13.2.4.1
まず、の正の数を利用し、1番目の解を求めます。
ステップ 13.2.4.2
次に、の負の値を利用し。2番目の解を求めます。
ステップ 13.2.4.3
完全解は、解の正と負の部分の両方の計算結果です。
ステップ 13.3
定義域は式が定義になるのすべての値です。
ステップ 14
各根を利用して検定区間を作成します。
ステップ 15
各区間から試験値を選び、この値を元の不等式に代入して、どの区間が不等式を満たすか判定します。
タップして手順をさらに表示してください…
ステップ 15.1
区間の値を検定し、この値によって不等式が真になるか確認します。
タップして手順をさらに表示してください…
ステップ 15.1.1
区間の値を選び、この値によって元の不等式が真になるか確認します。
ステップ 15.1.2
を元の不等式ので置き換えます。
ステップ 15.1.3
左辺は右辺より大きくありません。つまり、与えられた文は偽です。
False
False
ステップ 15.2
区間の値を検定し、この値によって不等式が真になるか確認します。
タップして手順をさらに表示してください…
ステップ 15.2.1
区間の値を選び、この値によって元の不等式が真になるか確認します。
ステップ 15.2.2
を元の不等式ので置き換えます。
ステップ 15.2.3
左辺は右辺より大きいです。つまり、与えられた文は常に真です。
True
True
ステップ 15.3
区間の値を検定し、この値によって不等式が真になるか確認します。
タップして手順をさらに表示してください…
ステップ 15.3.1
区間の値を選び、この値によって元の不等式が真になるか確認します。
ステップ 15.3.2
を元の不等式ので置き換えます。
ステップ 15.3.3
左辺は右辺より大きくありません。つまり、与えられた文は偽です。
False
False
ステップ 15.4
区間の値を検定し、この値によって不等式が真になるか確認します。
タップして手順をさらに表示してください…
ステップ 15.4.1
区間の値を選び、この値によって元の不等式が真になるか確認します。
ステップ 15.4.2
を元の不等式ので置き換えます。
ステップ 15.4.3
左辺は右辺より大きいです。つまり、与えられた文は常に真です。
True
True
ステップ 15.5
区間の値を検定し、この値によって不等式が真になるか確認します。
タップして手順をさらに表示してください…
ステップ 15.5.1
区間の値を選び、この値によって元の不等式が真になるか確認します。
ステップ 15.5.2
を元の不等式ので置き換えます。
ステップ 15.5.3
左辺は右辺より大きくありません。つまり、与えられた文は偽です。
False
False
ステップ 15.6
区間を比較して、どちらが元の不等式を満たすか判定します。
ステップ 16
解はすべての真の区間からなります。
または
ステップ 17
不等式を区間記号に変換します。
ステップ 18