問題を入力...
微分積分 例
ステップ 1
ステップ 1.1
総和則では、のに関する積分はです。
ステップ 1.2
はについて定数なので、についての微分係数はです。
ステップ 2
ステップ 2.1
はに対して定数なので、に対するの微分係数はです。
ステップ 2.2
およびのとき、はであるという積の法則を使って微分します。
ステップ 2.3
およびのとき、はであるという連鎖律を使って微分します。
ステップ 2.3.1
連鎖律を当てはめるために、をとします。
ステップ 2.3.2
=のとき、はであるという指数法則を使って微分します。
ステップ 2.3.3
のすべての発生をで置き換えます。
ステップ 2.4
はに対して定数なので、に対するの微分係数はです。
ステップ 2.5
のとき、はであるというべき乗則を使って微分します。
ステップ 2.6
のとき、はであるというべき乗則を使って微分します。
ステップ 2.7
にをかけます。
ステップ 2.8
とをまとめます。
ステップ 2.9
とをまとめます。
ステップ 2.10
にをかけます。
ステップ 3
ステップ 3.1
分配則を当てはめます。
ステップ 3.2
項をまとめます。
ステップ 3.2.1
とをまとめます。
ステップ 3.2.2
との共通因数を約分します。
ステップ 3.2.2.1
をで因数分解します。
ステップ 3.2.2.2
共通因数を約分します。
ステップ 3.2.2.2.1
をで因数分解します。
ステップ 3.2.2.2.2
共通因数を約分します。
ステップ 3.2.2.2.3
式を書き換えます。
ステップ 3.2.3
とをたし算します。