問題を入力...
微分積分 例
ステップ 1
方程式の両辺を微分します。
ステップ 2
に関するの微分係数はです。
ステップ 3
ステップ 3.1
総和則では、のに関する積分はです。
ステップ 3.2
の値を求めます。
ステップ 3.2.1
およびのとき、はであるという積の法則を使って微分します。
ステップ 3.2.2
およびのとき、はであるという連鎖律を使って微分します。
ステップ 3.2.2.1
連鎖律を当てはめるために、をとします。
ステップ 3.2.2.2
に関するの微分係数はです。
ステップ 3.2.2.3
のすべての発生をで置き換えます。
ステップ 3.2.3
はに対して定数なので、に対するの微分係数はです。
ステップ 3.2.4
のとき、はであるというべき乗則を使って微分します。
ステップ 3.2.5
のとき、はであるというべき乗則を使って微分します。
ステップ 3.2.6
にをかけます。
ステップ 3.2.7
にをかけます。
ステップ 3.3
の値を求めます。
ステップ 3.3.1
はに対して定数なので、に対するの微分係数はです。
ステップ 3.3.2
およびのとき、はであるという連鎖律を使って微分します。
ステップ 3.3.2.1
連鎖律を当てはめるために、をとします。
ステップ 3.3.2.2
に関するの微分係数はです。
ステップ 3.3.2.3
のすべての発生をで置き換えます。
ステップ 3.3.3
はに対して定数なので、に対するの微分係数はです。
ステップ 3.3.4
のとき、はであるというべき乗則を使って微分します。
ステップ 3.3.5
にをかけます。
ステップ 3.3.6
とをまとめます。
ステップ 3.3.7
とをまとめます。
ステップ 3.3.8
の共通因数を約分します。
ステップ 3.3.8.1
共通因数を約分します。
ステップ 3.3.8.2
をで割ります。
ステップ 3.4
はについて定数なので、についての微分係数はです。
ステップ 3.5
簡約します。
ステップ 3.5.1
項をまとめます。
ステップ 3.5.1.1
からを引きます。
ステップ 3.5.1.2
とをたし算します。
ステップ 3.5.1.3
とをたし算します。
ステップ 3.5.2
の因数を並べ替えます。
ステップ 4
左辺と右辺を等しくし、式を作り変えます。
ステップ 5
をで置き換えます。