微分積分 例

臨界点を求める f(x)=(x^2-1)^(1/3)
ステップ 1
一次導関数を求めます。
タップして手順をさらに表示してください…
ステップ 1.1
一次導関数を求めます。
タップして手順をさらに表示してください…
ステップ 1.1.1
およびのとき、であるという連鎖律を使って微分します。
タップして手順をさらに表示してください…
ステップ 1.1.1.1
連鎖律を当てはめるために、とします。
ステップ 1.1.1.2
のとき、であるというべき乗則を使って微分します。
ステップ 1.1.1.3
のすべての発生をで置き換えます。
ステップ 1.1.2
を公分母のある分数として書くために、を掛けます。
ステップ 1.1.3
をまとめます。
ステップ 1.1.4
公分母の分子をまとめます。
ステップ 1.1.5
分子を簡約します。
タップして手順をさらに表示してください…
ステップ 1.1.5.1
をかけます。
ステップ 1.1.5.2
からを引きます。
ステップ 1.1.6
分数をまとめます。
タップして手順をさらに表示してください…
ステップ 1.1.6.1
分数の前に負数を移動させます。
ステップ 1.1.6.2
をまとめます。
ステップ 1.1.6.3
負の指数法則を利用してを分母に移動させます。
ステップ 1.1.7
総和則では、に関する積分はです。
ステップ 1.1.8
のとき、であるというべき乗則を使って微分します。
ステップ 1.1.9
について定数なので、についての微分係数はです。
ステップ 1.1.10
分数をまとめます。
タップして手順をさらに表示してください…
ステップ 1.1.10.1
をたし算します。
ステップ 1.1.10.2
をまとめます。
ステップ 1.1.10.3
をまとめます。
ステップ 1.2
に関するの一次導関数はです。
ステップ 2
一次導関数をと等しくし、次に方程式を解きます。
タップして手順をさらに表示してください…
ステップ 2.1
一次導関数をに等しくします。
ステップ 2.2
分子を0に等しくします。
ステップ 2.3
の各項をで割り、簡約します。
タップして手順をさらに表示してください…
ステップ 2.3.1
の各項をで割ります。
ステップ 2.3.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 2.3.2.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 2.3.2.1.1
共通因数を約分します。
ステップ 2.3.2.1.2
で割ります。
ステップ 2.3.3
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 2.3.3.1
で割ります。
ステップ 3
微分係数が未定義になる値を求めます。
タップして手順をさらに表示してください…
ステップ 3.1
法則を当てはめ、累乗法を根で書き換えます。
ステップ 3.2
の分母をに等しいとして、式が未定義である場所を求めます。
ステップ 3.3
について解きます。
タップして手順をさらに表示してください…
ステップ 3.3.1
方程式の左辺から根を削除するため、方程式の両辺を3乗します。
ステップ 3.3.2
方程式の各辺を簡約します。
タップして手順をさらに表示してください…
ステップ 3.3.2.1
を利用し、に書き換えます。
ステップ 3.3.2.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 3.3.2.2.1
を簡約します。
タップして手順をさらに表示してください…
ステップ 3.3.2.2.1.1
積の法則をに当てはめます。
ステップ 3.3.2.2.1.2
乗します。
ステップ 3.3.2.2.1.3
の指数を掛けます。
タップして手順をさらに表示してください…
ステップ 3.3.2.2.1.3.1
べき乗則を当てはめて、指数をかけ算します。
ステップ 3.3.2.2.1.3.2
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 3.3.2.2.1.3.2.1
共通因数を約分します。
ステップ 3.3.2.2.1.3.2.2
式を書き換えます。
ステップ 3.3.2.3
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 3.3.2.3.1
を正数乗し、を得ます。
ステップ 3.3.3
について解きます。
タップして手順をさらに表示してください…
ステップ 3.3.3.1
方程式の左辺を因数分解します。
タップして手順をさらに表示してください…
ステップ 3.3.3.1.1
に書き換えます。
ステップ 3.3.3.1.2
両項とも完全平方なので、平方の差の公式を利用して、因数分解します。このとき、であり、です。
ステップ 3.3.3.1.3
因数分解。
タップして手順をさらに表示してください…
ステップ 3.3.3.1.3.1
積の法則をに当てはめます。
ステップ 3.3.3.1.3.2
不要な括弧を削除します。
ステップ 3.3.3.2
方程式の左辺の個々の因数がと等しいならば、式全体はと等しくなります。
ステップ 3.3.3.3
に等しくし、を解きます。
タップして手順をさらに表示してください…
ステップ 3.3.3.3.1
に等しいとします。
ステップ 3.3.3.3.2
についてを解きます。
タップして手順をさらに表示してください…
ステップ 3.3.3.3.2.1
に等しいとします。
ステップ 3.3.3.3.2.2
方程式の両辺からを引きます。
ステップ 3.3.3.4
に等しくし、を解きます。
タップして手順をさらに表示してください…
ステップ 3.3.3.4.1
に等しいとします。
ステップ 3.3.3.4.2
についてを解きます。
タップして手順をさらに表示してください…
ステップ 3.3.3.4.2.1
に等しいとします。
ステップ 3.3.3.4.2.2
方程式の両辺にを足します。
ステップ 3.3.3.5
最終解はを真にするすべての値です。
ステップ 3.4
分母がに等しい、平方根の引数がより小さい、または対数の引数が以下の場合、方程式は未定義です。
ステップ 4
微分係数がまたは未定義のとき、各におけるの値を求めます。
タップして手順をさらに表示してください…
ステップ 4.1
での値を求めます。
タップして手順をさらに表示してください…
ステップ 4.1.1
に代入します。
ステップ 4.1.2
簡約します。
タップして手順をさらに表示してください…
ステップ 4.1.2.1
式を簡約します。
タップして手順をさらに表示してください…
ステップ 4.1.2.1.1
を正数乗し、を得ます。
ステップ 4.1.2.1.2
からを引きます。
ステップ 4.1.2.1.3
に書き換えます。
ステップ 4.1.2.1.4
べき乗則を当てはめて、指数をかけ算します。
ステップ 4.1.2.2
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 4.1.2.2.1
共通因数を約分します。
ステップ 4.1.2.2.2
式を書き換えます。
ステップ 4.1.2.3
指数を求めます。
ステップ 4.2
での値を求めます。
タップして手順をさらに表示してください…
ステップ 4.2.1
に代入します。
ステップ 4.2.2
簡約します。
タップして手順をさらに表示してください…
ステップ 4.2.2.1
式を簡約します。
タップして手順をさらに表示してください…
ステップ 4.2.2.1.1
乗します。
ステップ 4.2.2.1.2
からを引きます。
ステップ 4.2.2.1.3
に書き換えます。
ステップ 4.2.2.1.4
べき乗則を当てはめて、指数をかけ算します。
ステップ 4.2.2.2
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 4.2.2.2.1
共通因数を約分します。
ステップ 4.2.2.2.2
式を書き換えます。
ステップ 4.2.2.3
指数を求めます。
ステップ 4.3
での値を求めます。
タップして手順をさらに表示してください…
ステップ 4.3.1
に代入します。
ステップ 4.3.2
簡約します。
タップして手順をさらに表示してください…
ステップ 4.3.2.1
式を簡約します。
タップして手順をさらに表示してください…
ステップ 4.3.2.1.1
1のすべての数の累乗は1です。
ステップ 4.3.2.1.2
からを引きます。
ステップ 4.3.2.1.3
に書き換えます。
ステップ 4.3.2.1.4
べき乗則を当てはめて、指数をかけ算します。
ステップ 4.3.2.2
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 4.3.2.2.1
共通因数を約分します。
ステップ 4.3.2.2.2
式を書き換えます。
ステップ 4.3.2.3
指数を求めます。
ステップ 4.4
点のすべてを一覧にします。
ステップ 5