問題を入力...
微分積分 例
ステップ 1
ステップ 1.1
およびのとき、はであるという積の法則を使って微分します。
ステップ 1.2
微分します。
ステップ 1.2.1
総和則では、のに関する積分はです。
ステップ 1.2.2
のとき、はであるというべき乗則を使って微分します。
ステップ 1.2.3
はに対して定数なので、に対するの微分係数はです。
ステップ 1.2.4
のとき、はであるというべき乗則を使って微分します。
ステップ 1.2.5
にをかけます。
ステップ 1.2.6
はについて定数なので、についての微分係数はです。
ステップ 1.2.7
とをたし算します。
ステップ 1.2.8
総和則では、のに関する積分はです。
ステップ 1.2.9
のとき、はであるというべき乗則を使って微分します。
ステップ 1.2.10
はについて定数なので、についての微分係数はです。
ステップ 1.2.11
式を簡約します。
ステップ 1.2.11.1
とをたし算します。
ステップ 1.2.11.2
にをかけます。
ステップ 1.3
簡約します。
ステップ 1.3.1
分配則を当てはめます。
ステップ 1.3.2
分配則を当てはめます。
ステップ 1.3.3
分配則を当てはめます。
ステップ 1.3.4
項をまとめます。
ステップ 1.3.4.1
を乗します。
ステップ 1.3.4.2
を乗します。
ステップ 1.3.4.3
べき乗則を利用して指数を組み合わせます。
ステップ 1.3.4.4
とをたし算します。
ステップ 1.3.4.5
にをかけます。
ステップ 1.3.4.6
をの左に移動させます。
ステップ 1.3.4.7
にをかけます。
ステップ 1.3.4.8
からを引きます。
ステップ 1.3.4.9
とをたし算します。
ステップ 1.3.4.10
からを引きます。
ステップ 1.3.4.11
とをたし算します。
ステップ 2
ステップ 2.1
方程式の左辺を因数分解します。
ステップ 2.1.1
をで因数分解します。
ステップ 2.1.1.1
をで因数分解します。
ステップ 2.1.1.2
をで因数分解します。
ステップ 2.1.1.3
をで因数分解します。
ステップ 2.1.1.4
をで因数分解します。
ステップ 2.1.1.5
をで因数分解します。
ステップ 2.1.2
因数分解。
ステップ 2.1.2.1
たすき掛けを利用してを因数分解します。
ステップ 2.1.2.1.1
の形式を考えます。積がで和がである整数の組を求めます。このとき、その積がで、その和がです。
ステップ 2.1.2.1.2
この整数を利用して因数分解の形を書きます。
ステップ 2.1.2.2
不要な括弧を削除します。
ステップ 2.2
方程式の左辺の個々の因数がと等しいならば、式全体はと等しくなります。
ステップ 2.3
をに等しくし、を解きます。
ステップ 2.3.1
がに等しいとします。
ステップ 2.3.2
方程式の両辺にを足します。
ステップ 2.4
をに等しくし、を解きます。
ステップ 2.4.1
がに等しいとします。
ステップ 2.4.2
方程式の両辺にを足します。
ステップ 2.5
最終解はを真にするすべての値です。
ステップ 3
ステップ 3.1
式の変数をで置換えます。
ステップ 3.2
結果を簡約します。
ステップ 3.2.1
からを引きます。
ステップ 3.2.2
各項を簡約します。
ステップ 3.2.2.1
を乗します。
ステップ 3.2.2.2
にをかけます。
ステップ 3.2.3
式を簡約します。
ステップ 3.2.3.1
からを引きます。
ステップ 3.2.3.2
とをたし算します。
ステップ 3.2.3.3
にをかけます。
ステップ 3.2.4
最終的な答えはです。
ステップ 4
ステップ 4.1
式の変数をで置換えます。
ステップ 4.2
結果を簡約します。
ステップ 4.2.1
からを引きます。
ステップ 4.2.2
各項を簡約します。
ステップ 4.2.2.1
1のすべての数の累乗は1です。
ステップ 4.2.2.2
にをかけます。
ステップ 4.2.3
式を簡約します。
ステップ 4.2.3.1
からを引きます。
ステップ 4.2.3.2
とをたし算します。
ステップ 4.2.3.3
にをかけます。
ステップ 4.2.4
最終的な答えはです。
ステップ 5
関数の水平接線はです。
ステップ 6