微分積分 例

水平方向の接線を求める f(x)=(x-1)(x^2-8x+7)
ステップ 1
微分係数を求めます。
タップして手順をさらに表示してください…
ステップ 1.1
およびのとき、であるという積の法則を使って微分します。
ステップ 1.2
微分します。
タップして手順をさらに表示してください…
ステップ 1.2.1
総和則では、に関する積分はです。
ステップ 1.2.2
のとき、であるというべき乗則を使って微分します。
ステップ 1.2.3
に対して定数なので、に対するの微分係数はです。
ステップ 1.2.4
のとき、であるというべき乗則を使って微分します。
ステップ 1.2.5
をかけます。
ステップ 1.2.6
について定数なので、についての微分係数はです。
ステップ 1.2.7
をたし算します。
ステップ 1.2.8
総和則では、に関する積分はです。
ステップ 1.2.9
のとき、であるというべき乗則を使って微分します。
ステップ 1.2.10
について定数なので、についての微分係数はです。
ステップ 1.2.11
式を簡約します。
タップして手順をさらに表示してください…
ステップ 1.2.11.1
をたし算します。
ステップ 1.2.11.2
をかけます。
ステップ 1.3
簡約します。
タップして手順をさらに表示してください…
ステップ 1.3.1
分配則を当てはめます。
ステップ 1.3.2
分配則を当てはめます。
ステップ 1.3.3
分配則を当てはめます。
ステップ 1.3.4
項をまとめます。
タップして手順をさらに表示してください…
ステップ 1.3.4.1
乗します。
ステップ 1.3.4.2
乗します。
ステップ 1.3.4.3
べき乗則を利用して指数を組み合わせます。
ステップ 1.3.4.4
をたし算します。
ステップ 1.3.4.5
をかけます。
ステップ 1.3.4.6
の左に移動させます。
ステップ 1.3.4.7
をかけます。
ステップ 1.3.4.8
からを引きます。
ステップ 1.3.4.9
をたし算します。
ステップ 1.3.4.10
からを引きます。
ステップ 1.3.4.11
をたし算します。
ステップ 2
微分係数をと等しくし、次に方程式を解きます。
タップして手順をさらに表示してください…
ステップ 2.1
方程式の左辺を因数分解します。
タップして手順をさらに表示してください…
ステップ 2.1.1
で因数分解します。
タップして手順をさらに表示してください…
ステップ 2.1.1.1
で因数分解します。
ステップ 2.1.1.2
で因数分解します。
ステップ 2.1.1.3
で因数分解します。
ステップ 2.1.1.4
で因数分解します。
ステップ 2.1.1.5
で因数分解します。
ステップ 2.1.2
因数分解。
タップして手順をさらに表示してください…
ステップ 2.1.2.1
たすき掛けを利用してを因数分解します。
タップして手順をさらに表示してください…
ステップ 2.1.2.1.1
の形式を考えます。積がで和がである整数の組を求めます。このとき、その積がで、その和がです。
ステップ 2.1.2.1.2
この整数を利用して因数分解の形を書きます。
ステップ 2.1.2.2
不要な括弧を削除します。
ステップ 2.2
方程式の左辺の個々の因数がと等しいならば、式全体はと等しくなります。
ステップ 2.3
に等しくし、を解きます。
タップして手順をさらに表示してください…
ステップ 2.3.1
に等しいとします。
ステップ 2.3.2
方程式の両辺にを足します。
ステップ 2.4
に等しくし、を解きます。
タップして手順をさらに表示してください…
ステップ 2.4.1
に等しいとします。
ステップ 2.4.2
方程式の両辺にを足します。
ステップ 2.5
最終解はを真にするすべての値です。
ステップ 3
における元の関数を解きます。
タップして手順をさらに表示してください…
ステップ 3.1
式の変数で置換えます。
ステップ 3.2
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.1
からを引きます。
ステップ 3.2.2
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.2.1
乗します。
ステップ 3.2.2.2
をかけます。
ステップ 3.2.3
式を簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.3.1
からを引きます。
ステップ 3.2.3.2
をたし算します。
ステップ 3.2.3.3
をかけます。
ステップ 3.2.4
最終的な答えはです。
ステップ 4
における元の関数を解きます。
タップして手順をさらに表示してください…
ステップ 4.1
式の変数で置換えます。
ステップ 4.2
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 4.2.1
からを引きます。
ステップ 4.2.2
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 4.2.2.1
1のすべての数の累乗は1です。
ステップ 4.2.2.2
をかけます。
ステップ 4.2.3
式を簡約します。
タップして手順をさらに表示してください…
ステップ 4.2.3.1
からを引きます。
ステップ 4.2.3.2
をたし算します。
ステップ 4.2.3.3
をかけます。
ステップ 4.2.4
最終的な答えはです。
ステップ 5
関数の水平接線はです。
ステップ 6