微分積分 例

凹面を求める (x^2-1)^3
ステップ 1
を関数で書きます。
ステップ 2
Find the values where the second derivative is equal to .
タップして手順をさらに表示してください…
ステップ 2.1
二次導関数を求めます。
タップして手順をさらに表示してください…
ステップ 2.1.1
一次導関数を求めます。
タップして手順をさらに表示してください…
ステップ 2.1.1.1
およびのとき、であるという連鎖律を使って微分します。
タップして手順をさらに表示してください…
ステップ 2.1.1.1.1
連鎖律を当てはめるために、とします。
ステップ 2.1.1.1.2
のとき、であるというべき乗則を使って微分します。
ステップ 2.1.1.1.3
のすべての発生をで置き換えます。
ステップ 2.1.1.2
微分します。
タップして手順をさらに表示してください…
ステップ 2.1.1.2.1
総和則では、に関する積分はです。
ステップ 2.1.1.2.2
のとき、であるというべき乗則を使って微分します。
ステップ 2.1.1.2.3
について定数なので、についての微分係数はです。
ステップ 2.1.1.2.4
式を簡約します。
タップして手順をさらに表示してください…
ステップ 2.1.1.2.4.1
をたし算します。
ステップ 2.1.1.2.4.2
をかけます。
ステップ 2.1.1.2.4.3
の因数を並べ替えます。
ステップ 2.1.2
二次導関数を求めます。
タップして手順をさらに表示してください…
ステップ 2.1.2.1
に対して定数なので、に対するの微分係数はです。
ステップ 2.1.2.2
およびのとき、であるという積の法則を使って微分します。
ステップ 2.1.2.3
およびのとき、であるという連鎖律を使って微分します。
タップして手順をさらに表示してください…
ステップ 2.1.2.3.1
連鎖律を当てはめるために、とします。
ステップ 2.1.2.3.2
のとき、であるというべき乗則を使って微分します。
ステップ 2.1.2.3.3
のすべての発生をで置き換えます。
ステップ 2.1.2.4
微分します。
タップして手順をさらに表示してください…
ステップ 2.1.2.4.1
総和則では、に関する積分はです。
ステップ 2.1.2.4.2
のとき、であるというべき乗則を使って微分します。
ステップ 2.1.2.4.3
について定数なので、についての微分係数はです。
ステップ 2.1.2.4.4
式を簡約します。
タップして手順をさらに表示してください…
ステップ 2.1.2.4.4.1
をたし算します。
ステップ 2.1.2.4.4.2
をかけます。
ステップ 2.1.2.5
乗します。
ステップ 2.1.2.6
乗します。
ステップ 2.1.2.7
べき乗則を利用して指数を組み合わせます。
ステップ 2.1.2.8
をたし算します。
ステップ 2.1.2.9
のとき、であるというべき乗則を使って微分します。
ステップ 2.1.2.10
をかけます。
ステップ 2.1.2.11
簡約します。
タップして手順をさらに表示してください…
ステップ 2.1.2.11.1
分配則を当てはめます。
ステップ 2.1.2.11.2
分配則を当てはめます。
ステップ 2.1.2.11.3
分配則を当てはめます。
ステップ 2.1.2.11.4
項をまとめます。
タップして手順をさらに表示してください…
ステップ 2.1.2.11.4.1
指数を足してを掛けます。
タップして手順をさらに表示してください…
ステップ 2.1.2.11.4.1.1
を移動させます。
ステップ 2.1.2.11.4.1.2
べき乗則を利用して指数を組み合わせます。
ステップ 2.1.2.11.4.1.3
をたし算します。
ステップ 2.1.2.11.4.2
の左に移動させます。
ステップ 2.1.2.11.4.3
をかけます。
ステップ 2.1.2.11.4.4
をかけます。
ステップ 2.1.2.11.4.5
の左に移動させます。
ステップ 2.1.2.11.4.6
をかけます。
ステップ 2.1.2.11.5
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 2.1.2.11.5.1
に書き換えます。
ステップ 2.1.2.11.5.2
分配法則(FOIL法)を使ってを展開します。
タップして手順をさらに表示してください…
ステップ 2.1.2.11.5.2.1
分配則を当てはめます。
ステップ 2.1.2.11.5.2.2
分配則を当てはめます。
ステップ 2.1.2.11.5.2.3
分配則を当てはめます。
ステップ 2.1.2.11.5.3
簡約し、同類項をまとめます。
タップして手順をさらに表示してください…
ステップ 2.1.2.11.5.3.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 2.1.2.11.5.3.1.1
指数を足してを掛けます。
タップして手順をさらに表示してください…
ステップ 2.1.2.11.5.3.1.1.1
べき乗則を利用して指数を組み合わせます。
ステップ 2.1.2.11.5.3.1.1.2
をたし算します。
ステップ 2.1.2.11.5.3.1.2
の左に移動させます。
ステップ 2.1.2.11.5.3.1.3
に書き換えます。
ステップ 2.1.2.11.5.3.1.4
に書き換えます。
ステップ 2.1.2.11.5.3.1.5
をかけます。
ステップ 2.1.2.11.5.3.2
からを引きます。
ステップ 2.1.2.11.5.4
分配則を当てはめます。
ステップ 2.1.2.11.5.5
簡約します。
タップして手順をさらに表示してください…
ステップ 2.1.2.11.5.5.1
をかけます。
ステップ 2.1.2.11.5.5.2
をかけます。
ステップ 2.1.2.11.6
をたし算します。
ステップ 2.1.2.11.7
からを引きます。
ステップ 2.1.3
に関するの二次導関数はです。
ステップ 2.2
二次導関数をと等しくし、次に方程式を解きます。
タップして手順をさらに表示してください…
ステップ 2.2.1
二次導関数をに等しくします。
ステップ 2.2.2
を方程式に代入します。これにより二次方程式の解の公式を利用しやすくします。
ステップ 2.2.3
方程式の左辺を因数分解します。
タップして手順をさらに表示してください…
ステップ 2.2.3.1
で因数分解します。
タップして手順をさらに表示してください…
ステップ 2.2.3.1.1
で因数分解します。
ステップ 2.2.3.1.2
で因数分解します。
ステップ 2.2.3.1.3
で因数分解します。
ステップ 2.2.3.1.4
で因数分解します。
ステップ 2.2.3.1.5
で因数分解します。
ステップ 2.2.3.2
因数分解。
タップして手順をさらに表示してください…
ステップ 2.2.3.2.1
群による因数分解。
タップして手順をさらに表示してください…
ステップ 2.2.3.2.1.1
の形の多項式について、積がで和がである2項の和に中央の項を書き換えます。
タップして手順をさらに表示してください…
ステップ 2.2.3.2.1.1.1
で因数分解します。
ステップ 2.2.3.2.1.1.2
プラスに書き換える
ステップ 2.2.3.2.1.1.3
分配則を当てはめます。
ステップ 2.2.3.2.1.2
各群から最大公約数を因数分解します。
タップして手順をさらに表示してください…
ステップ 2.2.3.2.1.2.1
前の2項と後ろの2項をまとめます。
ステップ 2.2.3.2.1.2.2
各群から最大公約数を因数分解します。
ステップ 2.2.3.2.1.3
最大公約数を因数分解して、多項式を因数分解します。
ステップ 2.2.3.2.2
不要な括弧を削除します。
ステップ 2.2.4
方程式の左辺の個々の因数がと等しいならば、式全体はと等しくなります。
ステップ 2.2.5
に等しくし、を解きます。
タップして手順をさらに表示してください…
ステップ 2.2.5.1
に等しいとします。
ステップ 2.2.5.2
についてを解きます。
タップして手順をさらに表示してください…
ステップ 2.2.5.2.1
方程式の両辺にを足します。
ステップ 2.2.5.2.2
の各項をで割り、簡約します。
タップして手順をさらに表示してください…
ステップ 2.2.5.2.2.1
の各項をで割ります。
ステップ 2.2.5.2.2.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 2.2.5.2.2.2.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 2.2.5.2.2.2.1.1
共通因数を約分します。
ステップ 2.2.5.2.2.2.1.2
で割ります。
ステップ 2.2.6
に等しくし、を解きます。
タップして手順をさらに表示してください…
ステップ 2.2.6.1
に等しいとします。
ステップ 2.2.6.2
方程式の両辺にを足します。
ステップ 2.2.7
最終解はを真にするすべての値です。
ステップ 2.2.8
の実数を解いた方程式に代入して戻します。
ステップ 2.2.9
について第1方程式を解きます。
ステップ 2.2.10
について方程式を解きます。
タップして手順をさらに表示してください…
ステップ 2.2.10.1
方程式の両辺の指定した根をとり、左辺の指数を消去します。
ステップ 2.2.10.2
を簡約します。
タップして手順をさらに表示してください…
ステップ 2.2.10.2.1
に書き換えます。
ステップ 2.2.10.2.2
のいずれの根はです。
ステップ 2.2.10.2.3
をかけます。
ステップ 2.2.10.2.4
分母を組み合わせて簡約します。
タップして手順をさらに表示してください…
ステップ 2.2.10.2.4.1
をかけます。
ステップ 2.2.10.2.4.2
乗します。
ステップ 2.2.10.2.4.3
乗します。
ステップ 2.2.10.2.4.4
べき乗則を利用して指数を組み合わせます。
ステップ 2.2.10.2.4.5
をたし算します。
ステップ 2.2.10.2.4.6
に書き換えます。
タップして手順をさらに表示してください…
ステップ 2.2.10.2.4.6.1
を利用し、に書き換えます。
ステップ 2.2.10.2.4.6.2
べき乗則を当てはめて、指数をかけ算します。
ステップ 2.2.10.2.4.6.3
をまとめます。
ステップ 2.2.10.2.4.6.4
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 2.2.10.2.4.6.4.1
共通因数を約分します。
ステップ 2.2.10.2.4.6.4.2
式を書き換えます。
ステップ 2.2.10.2.4.6.5
指数を求めます。
ステップ 2.2.10.3
完全解は、解の正と負の部分の両方の計算結果です。
タップして手順をさらに表示してください…
ステップ 2.2.10.3.1
まず、の正の数を利用し、1番目の解を求めます。
ステップ 2.2.10.3.2
次に、の負の値を利用し。2番目の解を求めます。
ステップ 2.2.10.3.3
完全解は、解の正と負の部分の両方の計算結果です。
ステップ 2.2.11
について二次方程式を解きます。
ステップ 2.2.12
について方程式を解きます。
タップして手順をさらに表示してください…
ステップ 2.2.12.1
括弧を削除します。
ステップ 2.2.12.2
方程式の両辺の指定した根をとり、左辺の指数を消去します。
ステップ 2.2.12.3
のいずれの根はです。
ステップ 2.2.12.4
完全解は、解の正と負の部分の両方の計算結果です。
タップして手順をさらに表示してください…
ステップ 2.2.12.4.1
まず、の正の数を利用し、1番目の解を求めます。
ステップ 2.2.12.4.2
次に、の負の値を利用し。2番目の解を求めます。
ステップ 2.2.12.4.3
完全解は、解の正と負の部分の両方の計算結果です。
ステップ 2.2.13
の解はです。
ステップ 3
式の定義域は、式が未定義の場合を除き、すべての実数です。この場合、式が未定義になるような実数はありません。
区間記号:
集合の内包的記法:
ステップ 4
二次導関数が0になる値の周りの区間と未定義値の区間を作成します。
ステップ 5
区間から任意の数を二次導関数に代入し、凹を求め判定します。
タップして手順をさらに表示してください…
ステップ 5.1
式の変数で置換えます。
ステップ 5.2
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 5.2.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 5.2.1.1
乗します。
ステップ 5.2.1.2
をかけます。
ステップ 5.2.1.3
乗します。
ステップ 5.2.1.4
をかけます。
ステップ 5.2.2
足し算と引き算で簡約します。
タップして手順をさらに表示してください…
ステップ 5.2.2.1
からを引きます。
ステップ 5.2.2.2
をたし算します。
ステップ 5.2.3
最終的な答えはです。
ステップ 5.3
が正なので、区間でグラフが上に凹です。
が正なのでで上に凹します。
が正なのでで上に凹します。
ステップ 6
区間から任意の数を二次導関数に代入し、凹を求め判定します。
タップして手順をさらに表示してください…
ステップ 6.1
式の変数で置換えます。
ステップ 6.2
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 6.2.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 6.2.1.1
乗します。
ステップ 6.2.1.2
をかけます。
ステップ 6.2.1.3
乗します。
ステップ 6.2.1.4
をかけます。
ステップ 6.2.2
足し算と引き算で簡約します。
タップして手順をさらに表示してください…
ステップ 6.2.2.1
からを引きます。
ステップ 6.2.2.2
をたし算します。
ステップ 6.2.3
最終的な答えはです。
ステップ 6.3
が負なので、区間でグラフが下に凹です。
が負なのでで下に凹します。
が負なのでで下に凹します。
ステップ 7
区間から任意の数を二次導関数に代入し、凹を求め判定します。
タップして手順をさらに表示してください…
ステップ 7.1
式の変数で置換えます。
ステップ 7.2
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 7.2.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 7.2.1.1
を正数乗し、を得ます。
ステップ 7.2.1.2
をかけます。
ステップ 7.2.1.3
を正数乗し、を得ます。
ステップ 7.2.1.4
をかけます。
ステップ 7.2.2
数を加えて簡約します。
タップして手順をさらに表示してください…
ステップ 7.2.2.1
をたし算します。
ステップ 7.2.2.2
をたし算します。
ステップ 7.2.3
最終的な答えはです。
ステップ 7.3
が正なので、区間でグラフが上に凹です。
が正なのでで上に凹します。
が正なのでで上に凹します。
ステップ 8
区間から任意の数を二次導関数に代入し、凹を求め判定します。
タップして手順をさらに表示してください…
ステップ 8.1
式の変数で置換えます。
ステップ 8.2
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 8.2.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 8.2.1.1
乗します。
ステップ 8.2.1.2
をかけます。
ステップ 8.2.1.3
乗します。
ステップ 8.2.1.4
をかけます。
ステップ 8.2.2
足し算と引き算で簡約します。
タップして手順をさらに表示してください…
ステップ 8.2.2.1
からを引きます。
ステップ 8.2.2.2
をたし算します。
ステップ 8.2.3
最終的な答えはです。
ステップ 8.3
が負なので、区間でグラフが下に凹です。
が負なのでで下に凹します。
が負なのでで下に凹します。
ステップ 9
区間から任意の数を二次導関数に代入し、凹を求め判定します。
タップして手順をさらに表示してください…
ステップ 9.1
式の変数で置換えます。
ステップ 9.2
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 9.2.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 9.2.1.1
乗します。
ステップ 9.2.1.2
をかけます。
ステップ 9.2.1.3
乗します。
ステップ 9.2.1.4
をかけます。
ステップ 9.2.2
足し算と引き算で簡約します。
タップして手順をさらに表示してください…
ステップ 9.2.2.1
からを引きます。
ステップ 9.2.2.2
をたし算します。
ステップ 9.2.3
最終的な答えはです。
ステップ 9.3
が正なので、区間でグラフが上に凹です。
が正なのでで上に凹します。
が正なのでで上に凹します。
ステップ 10
二次導関数が負のときグラフは下に凹で、二次導関数が正のときグラフは上に凹です。
が正なのでで上に凹します。
が負なのでで下に凹します。
が正なのでで上に凹します。
が負なのでで下に凹します。
が正なのでで上に凹します。
ステップ 11