問題を入力...
微分積分 例
ステップ 1
ステップ 1.1
分子と分母の極限値を求めます。
ステップ 1.1.1
分子と分母の極限値をとります。
ステップ 1.1.2
対数が無限大に近づくとき、値はになります。
ステップ 1.1.3
首位係数が正である多項式の無限大における極限は無限大です。
ステップ 1.1.4
無限大割る無限大は未定義です。
未定義
ステップ 1.2
は不定形があるので、ロピタルの定理を当てはめます。ロピタルの定理は、関数の商の極限は微分係数の商の極限に等しいとしています。
ステップ 1.3
分子と分母の微分係数を求めます。
ステップ 1.3.1
分母と分子を微分します。
ステップ 1.3.2
に関するの微分係数はです。
ステップ 1.3.3
のとき、はであるというべき乗則を使って微分します。
ステップ 1.4
分子に分母の逆数を掛けます。
ステップ 1.5
にをかけます。
ステップ 2
分子が実数に近づき、分母が有界でないので、分数はに近づきます。