問題を入力...
微分積分 例
ステップ 1
ステップ 1.1
およびのとき、はであるという連鎖律を使って微分します。
ステップ 1.1.1
連鎖律を当てはめるために、をとします。
ステップ 1.1.2
に関するの微分係数はです。
ステップ 1.1.3
のすべての発生をで置き換えます。
ステップ 1.2
微分します。
ステップ 1.2.1
はに対して定数なので、に対するの微分係数はです。
ステップ 1.2.2
とをまとめます。
ステップ 1.2.3
のとき、はであるというべき乗則を使って微分します。
ステップ 1.2.4
にをかけます。
ステップ 2
ステップ 2.1
はに対して定数なので、に対するの微分係数はです。
ステップ 2.2
およびのとき、はであるという連鎖律を使って微分します。
ステップ 2.2.1
連鎖律を当てはめるために、をとします。
ステップ 2.2.2
に関するの微分係数はです。
ステップ 2.2.3
のすべての発生をで置き換えます。
ステップ 2.3
微分します。
ステップ 2.3.1
とをまとめます。
ステップ 2.3.2
はに対して定数なので、に対するの微分係数はです。
ステップ 2.3.3
分数をまとめます。
ステップ 2.3.3.1
にをかけます。
ステップ 2.3.3.2
にをかけます。
ステップ 2.3.4
のとき、はであるというべき乗則を使って微分します。
ステップ 2.3.5
にをかけます。
ステップ 3
ステップ 3.1
はに対して定数なので、に対するの微分係数はです。
ステップ 3.2
およびのとき、はであるという連鎖律を使って微分します。
ステップ 3.2.1
連鎖律を当てはめるために、をとします。
ステップ 3.2.2
に関するの微分係数はです。
ステップ 3.2.3
のすべての発生をで置き換えます。
ステップ 3.3
微分します。
ステップ 3.3.1
とをまとめます。
ステップ 3.3.2
はに対して定数なので、に対するの微分係数はです。
ステップ 3.3.3
分数をまとめます。
ステップ 3.3.3.1
にをかけます。
ステップ 3.3.3.2
にをかけます。
ステップ 3.3.4
のとき、はであるというべき乗則を使って微分します。
ステップ 3.3.5
にをかけます。
ステップ 4
ステップ 4.1
はに対して定数なので、に対するの微分係数はです。
ステップ 4.2
およびのとき、はであるという連鎖律を使って微分します。
ステップ 4.2.1
連鎖律を当てはめるために、をとします。
ステップ 4.2.2
に関するの微分係数はです。
ステップ 4.2.3
のすべての発生をで置き換えます。
ステップ 4.3
微分します。
ステップ 4.3.1
にをかけます。
ステップ 4.3.2
分数をまとめます。
ステップ 4.3.2.1
にをかけます。
ステップ 4.3.2.2
とをまとめます。
ステップ 4.3.3
はに対して定数なので、に対するの微分係数はです。
ステップ 4.3.4
分数をまとめます。
ステップ 4.3.4.1
にをかけます。
ステップ 4.3.4.2
にをかけます。
ステップ 4.3.5
のとき、はであるというべき乗則を使って微分します。
ステップ 4.3.6
にをかけます。