問題を入力...
微分積分 例
ステップ 1
ステップ 1.1
およびのとき、はであるという連鎖律を使って微分します。
ステップ 1.1.1
連鎖律を当てはめるために、をとします。
ステップ 1.1.2
のとき、はであるというべき乗則を使って微分します。
ステップ 1.1.3
のすべての発生をで置き換えます。
ステップ 1.2
およびのとき、はであるという連鎖律を使って微分します。
ステップ 1.2.1
連鎖律を当てはめるために、をとします。
ステップ 1.2.2
に関するの微分係数はです。
ステップ 1.2.3
のすべての発生をで置き換えます。
ステップ 1.3
微分します。
ステップ 1.3.1
総和則では、のに関する積分はです。
ステップ 1.3.2
はに対して定数なので、に対するの微分係数はです。
ステップ 1.3.3
のとき、はであるというべき乗則を使って微分します。
ステップ 1.3.4
にをかけます。
ステップ 1.3.5
はについて定数なので、についての微分係数はです。
ステップ 1.3.6
式を簡約します。
ステップ 1.3.6.1
とをたし算します。
ステップ 1.3.6.2
にをかけます。
ステップ 1.3.6.3
の因数を並べ替えます。
ステップ 2
ステップ 2.1
はに対して定数なので、に対するの微分係数はです。
ステップ 2.2
およびのとき、はであるという積の法則を使って微分します。
ステップ 2.3
およびのとき、はであるという連鎖律を使って微分します。
ステップ 2.3.1
連鎖律を当てはめるために、をとします。
ステップ 2.3.2
に関するの微分係数はです。
ステップ 2.3.3
のすべての発生をで置き換えます。
ステップ 2.4
を乗します。
ステップ 2.5
を乗します。
ステップ 2.6
べき乗則を利用して指数を組み合わせます。
ステップ 2.7
微分します。
ステップ 2.7.1
とをたし算します。
ステップ 2.7.2
総和則では、のに関する積分はです。
ステップ 2.7.3
はに対して定数なので、に対するの微分係数はです。
ステップ 2.7.4
のとき、はであるというべき乗則を使って微分します。
ステップ 2.7.5
にをかけます。
ステップ 2.7.6
はについて定数なので、についての微分係数はです。
ステップ 2.7.7
式を簡約します。
ステップ 2.7.7.1
とをたし算します。
ステップ 2.7.7.2
をの左に移動させます。
ステップ 2.8
およびのとき、はであるという連鎖律を使って微分します。
ステップ 2.8.1
連鎖律を当てはめるために、をとします。
ステップ 2.8.2
に関するの微分係数はです。
ステップ 2.8.3
のすべての発生をで置き換えます。
ステップ 2.9
を乗します。
ステップ 2.10
を乗します。
ステップ 2.11
べき乗則を利用して指数を組み合わせます。
ステップ 2.12
とをたし算します。
ステップ 2.13
総和則では、のに関する積分はです。
ステップ 2.14
はに対して定数なので、に対するの微分係数はです。
ステップ 2.15
のとき、はであるというべき乗則を使って微分します。
ステップ 2.16
にをかけます。
ステップ 2.17
はについて定数なので、についての微分係数はです。
ステップ 2.18
式を簡約します。
ステップ 2.18.1
とをたし算します。
ステップ 2.18.2
にをかけます。
ステップ 2.19
簡約します。
ステップ 2.19.1
分配則を当てはめます。
ステップ 2.19.2
項をまとめます。
ステップ 2.19.2.1
にをかけます。
ステップ 2.19.2.2
にをかけます。
ステップ 3
ステップ 3.1
総和則では、のに関する積分はです。
ステップ 3.2
の値を求めます。
ステップ 3.2.1
はに対して定数なので、に対するの微分係数はです。
ステップ 3.2.2
およびのとき、はであるという連鎖律を使って微分します。
ステップ 3.2.2.1
連鎖律を当てはめるために、をとします。
ステップ 3.2.2.2
のとき、はであるというべき乗則を使って微分します。
ステップ 3.2.2.3
のすべての発生をで置き換えます。
ステップ 3.2.3
およびのとき、はであるという連鎖律を使って微分します。
ステップ 3.2.3.1
連鎖律を当てはめるために、をとします。
ステップ 3.2.3.2
に関するの微分係数はです。
ステップ 3.2.3.3
のすべての発生をで置き換えます。
ステップ 3.2.4
総和則では、のに関する積分はです。
ステップ 3.2.5
はに対して定数なので、に対するの微分係数はです。
ステップ 3.2.6
のとき、はであるというべき乗則を使って微分します。
ステップ 3.2.7
はについて定数なので、についての微分係数はです。
ステップ 3.2.8
にをかけます。
ステップ 3.2.9
とをたし算します。
ステップ 3.2.10
にをかけます。
ステップ 3.2.11
にをかけます。
ステップ 3.2.12
にをかけます。
ステップ 3.3
の値を求めます。
ステップ 3.3.1
はに対して定数なので、に対するの微分係数はです。
ステップ 3.3.2
およびのとき、はであるという連鎖律を使って微分します。
ステップ 3.3.2.1
連鎖律を当てはめるために、をとします。
ステップ 3.3.2.2
のとき、はであるというべき乗則を使って微分します。
ステップ 3.3.2.3
のすべての発生をで置き換えます。
ステップ 3.3.3
およびのとき、はであるという連鎖律を使って微分します。
ステップ 3.3.3.1
連鎖律を当てはめるために、をとします。
ステップ 3.3.3.2
に関するの微分係数はです。
ステップ 3.3.3.3
のすべての発生をで置き換えます。
ステップ 3.3.4
総和則では、のに関する積分はです。
ステップ 3.3.5
はに対して定数なので、に対するの微分係数はです。
ステップ 3.3.6
のとき、はであるというべき乗則を使って微分します。
ステップ 3.3.7
はについて定数なので、についての微分係数はです。
ステップ 3.3.8
にをかけます。
ステップ 3.3.9
とをたし算します。
ステップ 3.3.10
をの左に移動させます。
ステップ 3.3.11
にをかけます。
ステップ 3.3.12
にをかけます。
ステップ 3.4
項をまとめます。
ステップ 3.4.1
の因数を並べ替えます。
ステップ 3.4.2
からを引きます。
ステップ 4
ステップ 4.1
はに対して定数なので、に対するの微分係数はです。
ステップ 4.2
およびのとき、はであるという積の法則を使って微分します。
ステップ 4.3
およびのとき、はであるという連鎖律を使って微分します。
ステップ 4.3.1
連鎖律を当てはめるために、をとします。
ステップ 4.3.2
に関するの微分係数はです。
ステップ 4.3.3
のすべての発生をで置き換えます。
ステップ 4.4
を乗します。
ステップ 4.5
を乗します。
ステップ 4.6
べき乗則を利用して指数を組み合わせます。
ステップ 4.7
微分します。
ステップ 4.7.1
とをたし算します。
ステップ 4.7.2
総和則では、のに関する積分はです。
ステップ 4.7.3
はに対して定数なので、に対するの微分係数はです。
ステップ 4.7.4
のとき、はであるというべき乗則を使って微分します。
ステップ 4.7.5
にをかけます。
ステップ 4.7.6
はについて定数なので、についての微分係数はです。
ステップ 4.7.7
式を簡約します。
ステップ 4.7.7.1
とをたし算します。
ステップ 4.7.7.2
をの左に移動させます。
ステップ 4.8
およびのとき、はであるという連鎖律を使って微分します。
ステップ 4.8.1
連鎖律を当てはめるために、をとします。
ステップ 4.8.2
に関するの微分係数はです。
ステップ 4.8.3
のすべての発生をで置き換えます。
ステップ 4.9
を乗します。
ステップ 4.10
を乗します。
ステップ 4.11
べき乗則を利用して指数を組み合わせます。
ステップ 4.12
とをたし算します。
ステップ 4.13
総和則では、のに関する積分はです。
ステップ 4.14
はに対して定数なので、に対するの微分係数はです。
ステップ 4.15
のとき、はであるというべき乗則を使って微分します。
ステップ 4.16
にをかけます。
ステップ 4.17
はについて定数なので、についての微分係数はです。
ステップ 4.18
式を簡約します。
ステップ 4.18.1
とをたし算します。
ステップ 4.18.2
にをかけます。
ステップ 4.19
簡約します。
ステップ 4.19.1
分配則を当てはめます。
ステップ 4.19.2
項をまとめます。
ステップ 4.19.2.1
にをかけます。
ステップ 4.19.2.2
にをかけます。