問題を入力...
微分積分 例
ステップ 1
ステップ 1.1
の各項をで割ります。
ステップ 1.2
左辺を簡約します。
ステップ 1.2.1
の共通因数を約分します。
ステップ 1.2.1.1
共通因数を約分します。
ステップ 1.2.1.2
をで割ります。
ステップ 1.3
右辺を簡約します。
ステップ 1.3.1
をで割ります。
ステップ 2
方程式の両辺の逆正弦をとり、正弦の中からを取り出します。
ステップ 3
ステップ 3.1
の厳密値はです。
ステップ 4
ステップ 4.1
の各項をで割ります。
ステップ 4.2
左辺を簡約します。
ステップ 4.2.1
の共通因数を約分します。
ステップ 4.2.1.1
共通因数を約分します。
ステップ 4.2.1.2
をで割ります。
ステップ 4.3
右辺を簡約します。
ステップ 4.3.1
をで割ります。
ステップ 5
正弦関数は、第一象限と第二象限で正となります。2番目の解を求めるには、から参照角を引き、第二象限で解を求めます。
ステップ 6
ステップ 6.1
簡約します。
ステップ 6.1.1
にをかけます。
ステップ 6.1.2
とをたし算します。
ステップ 6.2
の各項をで割り、簡約します。
ステップ 6.2.1
の各項をで割ります。
ステップ 6.2.2
左辺を簡約します。
ステップ 6.2.2.1
の共通因数を約分します。
ステップ 6.2.2.1.1
共通因数を約分します。
ステップ 6.2.2.1.2
をで割ります。
ステップ 7
ステップ 7.1
関数の期間はを利用して求めることができます。
ステップ 7.2
周期の公式のをで置き換えます。
ステップ 7.3
絶対値は数と0の間の距離です。との間の距離はです。
ステップ 8
関数の周期がなので、両方向でラジアンごとに値を繰り返します。
、任意の整数
ステップ 9
答えをまとめます。
、任意の整数