問題を入力...
微分積分 例
ステップ 1
方程式をとして書き換えます。
ステップ 2
ステップ 2.1
の各項をで割ります。
ステップ 2.2
左辺を簡約します。
ステップ 2.2.1
の共通因数を約分します。
ステップ 2.2.1.1
共通因数を約分します。
ステップ 2.2.1.2
をで割ります。
ステップ 2.3
右辺を簡約します。
ステップ 2.3.1
をで割ります。
ステップ 3
方程式の両辺からを引きます。
ステップ 4
からを引きます。
ステップ 5
ステップ 5.1
をで因数分解します。
ステップ 5.1.1
をで因数分解します。
ステップ 5.1.2
をで因数分解します。
ステップ 5.1.3
をで因数分解します。
ステップ 5.1.4
をで因数分解します。
ステップ 5.1.5
をで因数分解します。
ステップ 5.2
とします。をに代入します。
ステップ 5.3
たすき掛けを利用してを因数分解します。
ステップ 5.3.1
の形式を考えます。積がで和がである整数の組を求めます。このとき、その積がで、その和がです。
ステップ 5.3.2
この整数を利用して因数分解の形を書きます。
ステップ 5.4
因数分解。
ステップ 5.4.1
のすべての発生をで置き換えます。
ステップ 5.4.2
不要な括弧を削除します。
ステップ 6
方程式の左辺の個々の因数がと等しいならば、式全体はと等しくなります。
ステップ 7
ステップ 7.1
がに等しいとします。
ステップ 7.2
方程式の両辺にを足します。
ステップ 8
ステップ 8.1
がに等しいとします。
ステップ 8.2
方程式の両辺からを引きます。
ステップ 9
最終解はを真にするすべての値です。