問題を入力...
微分積分 例
ステップ 1
分子と分母を分母のの最大べき乗で割ると、です。
ステップ 2
ステップ 2.1
各項を簡約します。
ステップ 2.1.1
の共通因数を約分します。
ステップ 2.1.1.1
共通因数を約分します。
ステップ 2.1.1.2
をで割ります。
ステップ 2.1.2
との共通因数を約分します。
ステップ 2.1.2.1
をで因数分解します。
ステップ 2.1.2.2
共通因数を約分します。
ステップ 2.1.2.2.1
をで因数分解します。
ステップ 2.1.2.2.2
共通因数を約分します。
ステップ 2.1.2.2.3
式を書き換えます。
ステップ 2.1.3
分数の前に負数を移動させます。
ステップ 2.2
各項を簡約します。
ステップ 2.2.1
の共通因数を約分します。
ステップ 2.2.1.1
共通因数を約分します。
ステップ 2.2.1.2
をで割ります。
ステップ 2.2.2
との共通因数を約分します。
ステップ 2.2.2.1
をで因数分解します。
ステップ 2.2.2.2
共通因数を約分します。
ステップ 2.2.2.2.1
をで因数分解します。
ステップ 2.2.2.2.2
共通因数を約分します。
ステップ 2.2.2.2.3
式を書き換えます。
ステップ 2.2.3
分数の前に負数を移動させます。
ステップ 2.3
がに近づいたら、極限で極限の商の法則を利用して極限を分割します。
ステップ 2.4
がに近づいたら、極限で極限の法則の和を利用して分解します。
ステップ 2.5
がに近づくと定数であるの極限値を求めます。
ステップ 2.6
の項はに対して一定なので、極限の外に移動させます。
ステップ 3
分子が実数に近づき、分母が有界でないので、分数はに近づきます。
ステップ 4
の項はに対して一定なので、極限の外に移動させます。
ステップ 5
分子が実数に近づき、分母が有界でないので、分数はに近づきます。
ステップ 6
ステップ 6.1
がに近づいたら、極限で極限の法則の和を利用して分解します。
ステップ 6.2
がに近づくと定数であるの極限値を求めます。
ステップ 6.3
の項はに対して一定なので、極限の外に移動させます。
ステップ 7
分子が実数に近づき、分母が有界でないので、分数はに近づきます。
ステップ 8
の項はに対して一定なので、極限の外に移動させます。
ステップ 9
分子が実数に近づき、分母が有界でないので、分数はに近づきます。
ステップ 10
ステップ 10.1
分子を簡約します。
ステップ 10.1.1
にをかけます。
ステップ 10.1.2
にをかけます。
ステップ 10.1.3
とをたし算します。
ステップ 10.1.4
とをたし算します。
ステップ 10.2
分母を簡約します。
ステップ 10.2.1
にをかけます。
ステップ 10.2.2
にをかけます。
ステップ 10.2.3
とをたし算します。
ステップ 10.2.4
とをたし算します。
ステップ 11
結果は複数の形で表すことができます。
完全形:
10進法形式: