問題を入力...
微分積分 例
ステップ 1
がに近づいたら、極限で極限の法則の和を利用して分解します。
ステップ 2
の項はに対して一定なので、極限の外に移動させます。
ステップ 3
極限べき乗則を利用して、指数をから極限値外側に移動させます。
ステップ 4
の項はに対して一定なので、極限の外に移動させます。
ステップ 5
極限べき乗則を利用して、指数をから極限値外側に移動させます。
ステップ 6
の項はに対して一定なので、極限の外に移動させます。
ステップ 7
がに近づくと定数であるの極限値を求めます。
ステップ 8
ステップ 8.1
をに代入し、の極限値を求めます。
ステップ 8.2
をに代入し、の極限値を求めます。
ステップ 8.3
をに代入し、の極限値を求めます。
ステップ 9
ステップ 9.1
各項を簡約します。
ステップ 9.1.1
を乗します。
ステップ 9.1.2
にをかけます。
ステップ 9.1.3
を乗します。
ステップ 9.1.4
にをかけます。
ステップ 9.1.5
にをかけます。
ステップ 9.2
からを引きます。
ステップ 9.3
とをたし算します。
ステップ 9.4
とをたし算します。