微分積分 例

ロピタルの定理を利用し値を求める xが7x^2-1)/(x^2-25)の左から5に近づくときの(極限
ステップ 1
極限を求めます。
タップして手順をさらに表示してください…
ステップ 1.1
に近づいたら、極限で極限の法則の和を利用して分解します。
ステップ 1.2
の項はに対して一定なので、極限の外に移動させます。
ステップ 1.3
極限べき乗則を利用して、指数から極限値外側に移動させます。
ステップ 1.4
に近づくと定数であるの極限値を求めます。
ステップ 2
に代入し、の極限値を求めます。
ステップ 3
答えを簡約します。
タップして手順をさらに表示してください…
ステップ 3.1
分子を簡約します。
タップして手順をさらに表示してください…
ステップ 3.1.1
乗します。
ステップ 3.1.2
をかけます。
ステップ 3.1.3
をかけます。
ステップ 3.1.4
からを引きます。
ステップ 3.2
分母を簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.1
に書き換えます。
ステップ 3.2.2
両項とも完全平方なので、平方の差の公式を利用して、因数分解します。このとき、であり、です。