問題を入力...
微分積分 例
ステップ 1
ステップ 1.1
総和則では、のに関する積分はです。
ステップ 1.2
の値を求めます。
ステップ 1.2.1
およびのとき、はであるという連鎖律を使って微分します。
ステップ 1.2.1.1
連鎖律を当てはめるために、をとします。
ステップ 1.2.1.2
=のとき、はであるという指数法則を使って微分します。
ステップ 1.2.1.3
のすべての発生をで置き換えます。
ステップ 1.2.2
はに対して定数なので、に対するの微分係数はです。
ステップ 1.2.3
のとき、はであるというべき乗則を使って微分します。
ステップ 1.2.4
にをかけます。
ステップ 1.2.5
をの左に移動させます。
ステップ 1.2.6
をに書き換えます。
ステップ 1.3
=のとき、はであるという指数法則を使って微分します。
ステップ 1.4
項を並べ替えます。
ステップ 2
ステップ 2.1
総和則では、のに関する積分はです。
ステップ 2.2
=のとき、はであるという指数法則を使って微分します。
ステップ 2.3
の値を求めます。
ステップ 2.3.1
はに対して定数なので、に対するの微分係数はです。
ステップ 2.3.2
およびのとき、はであるという連鎖律を使って微分します。
ステップ 2.3.2.1
連鎖律を当てはめるために、をとします。
ステップ 2.3.2.2
=のとき、はであるという指数法則を使って微分します。
ステップ 2.3.2.3
のすべての発生をで置き換えます。
ステップ 2.3.3
はに対して定数なので、に対するの微分係数はです。
ステップ 2.3.4
のとき、はであるというべき乗則を使って微分します。
ステップ 2.3.5
にをかけます。
ステップ 2.3.6
をの左に移動させます。
ステップ 2.3.7
をに書き換えます。
ステップ 2.3.8
にをかけます。
ステップ 2.3.9
にをかけます。
ステップ 3
ステップ 3.1
総和則では、のに関する積分はです。
ステップ 3.2
=のとき、はであるという指数法則を使って微分します。
ステップ 3.3
の値を求めます。
ステップ 3.3.1
およびのとき、はであるという連鎖律を使って微分します。
ステップ 3.3.1.1
連鎖律を当てはめるために、をとします。
ステップ 3.3.1.2
=のとき、はであるという指数法則を使って微分します。
ステップ 3.3.1.3
のすべての発生をで置き換えます。
ステップ 3.3.2
はに対して定数なので、に対するの微分係数はです。
ステップ 3.3.3
のとき、はであるというべき乗則を使って微分します。
ステップ 3.3.4
にをかけます。
ステップ 3.3.5
をの左に移動させます。
ステップ 3.3.6
をに書き換えます。
ステップ 4
ステップ 4.1
総和則では、のに関する積分はです。
ステップ 4.2
=のとき、はであるという指数法則を使って微分します。
ステップ 4.3
の値を求めます。
ステップ 4.3.1
はに対して定数なので、に対するの微分係数はです。
ステップ 4.3.2
およびのとき、はであるという連鎖律を使って微分します。
ステップ 4.3.2.1
連鎖律を当てはめるために、をとします。
ステップ 4.3.2.2
=のとき、はであるという指数法則を使って微分します。
ステップ 4.3.2.3
のすべての発生をで置き換えます。
ステップ 4.3.3
はに対して定数なので、に対するの微分係数はです。
ステップ 4.3.4
のとき、はであるというべき乗則を使って微分します。
ステップ 4.3.5
にをかけます。
ステップ 4.3.6
をの左に移動させます。
ステップ 4.3.7
をに書き換えます。
ステップ 4.3.8
にをかけます。
ステップ 4.3.9
にをかけます。