微分積分 例

臨界点を求める sin(2x)
ステップ 1
一次導関数を求めます。
タップして手順をさらに表示してください…
ステップ 1.1
一次導関数を求めます。
タップして手順をさらに表示してください…
ステップ 1.1.1
およびのとき、であるという連鎖律を使って微分します。
タップして手順をさらに表示してください…
ステップ 1.1.1.1
連鎖律を当てはめるために、とします。
ステップ 1.1.1.2
に関するの微分係数はです。
ステップ 1.1.1.3
のすべての発生をで置き換えます。
ステップ 1.1.2
微分します。
タップして手順をさらに表示してください…
ステップ 1.1.2.1
に対して定数なので、に対するの微分係数はです。
ステップ 1.1.2.2
のとき、であるというべき乗則を使って微分します。
ステップ 1.1.2.3
式を簡約します。
タップして手順をさらに表示してください…
ステップ 1.1.2.3.1
をかけます。
ステップ 1.1.2.3.2
の左に移動させます。
ステップ 1.2
に関するの一次導関数はです。
ステップ 2
一次導関数をと等しくし、次に方程式を解きます。
タップして手順をさらに表示してください…
ステップ 2.1
一次導関数をに等しくします。
ステップ 2.2
の各項をで割り、簡約します。
タップして手順をさらに表示してください…
ステップ 2.2.1
の各項をで割ります。
ステップ 2.2.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 2.2.2.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 2.2.2.1.1
共通因数を約分します。
ステップ 2.2.2.1.2
で割ります。
ステップ 2.2.3
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 2.2.3.1
で割ります。
ステップ 2.3
方程式の両辺の逆余弦をとり、余弦の中からを取り出します。
ステップ 2.4
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 2.4.1
の厳密値はです。
ステップ 2.5
の各項をで割り、簡約します。
タップして手順をさらに表示してください…
ステップ 2.5.1
の各項をで割ります。
ステップ 2.5.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 2.5.2.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 2.5.2.1.1
共通因数を約分します。
ステップ 2.5.2.1.2
で割ります。
ステップ 2.5.3
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 2.5.3.1
分子に分母の逆数を掛けます。
ステップ 2.5.3.2
を掛けます。
タップして手順をさらに表示してください…
ステップ 2.5.3.2.1
をかけます。
ステップ 2.5.3.2.2
をかけます。
ステップ 2.6
余弦関数は、第一象限と第四象限で正となります。2番目の解を求めるには、から参照角を引き、第四象限で解を求めます。
ステップ 2.7
について解きます。
タップして手順をさらに表示してください…
ステップ 2.7.1
簡約します。
タップして手順をさらに表示してください…
ステップ 2.7.1.1
を公分母のある分数として書くために、を掛けます。
ステップ 2.7.1.2
をまとめます。
ステップ 2.7.1.3
公分母の分子をまとめます。
ステップ 2.7.1.4
をかけます。
ステップ 2.7.1.5
からを引きます。
ステップ 2.7.2
の各項をで割り、簡約します。
タップして手順をさらに表示してください…
ステップ 2.7.2.1
の各項をで割ります。
ステップ 2.7.2.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 2.7.2.2.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 2.7.2.2.1.1
共通因数を約分します。
ステップ 2.7.2.2.1.2
で割ります。
ステップ 2.7.2.3
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 2.7.2.3.1
分子に分母の逆数を掛けます。
ステップ 2.7.2.3.2
を掛けます。
タップして手順をさらに表示してください…
ステップ 2.7.2.3.2.1
をかけます。
ステップ 2.7.2.3.2.2
をかけます。
ステップ 2.8
の周期を求めます。
タップして手順をさらに表示してください…
ステップ 2.8.1
関数の期間はを利用して求めることができます。
ステップ 2.8.2
周期の公式ので置き換えます。
ステップ 2.8.3
絶対値は数と0の間の距離です。の間の距離はです。
ステップ 2.8.4
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 2.8.4.1
共通因数を約分します。
ステップ 2.8.4.2
で割ります。
ステップ 2.9
関数の周期がなので、両方向でラジアンごとに値を繰り返します。
、任意の整数
ステップ 2.10
答えをまとめます。
、任意の整数
、任意の整数
ステップ 3
微分係数が未定義になる値を求めます。
タップして手順をさらに表示してください…
ステップ 3.1
式の定義域は、式が未定義の場合を除き、すべての実数です。この場合、式が未定義になるような実数はありません。
ステップ 4
微分係数がまたは未定義のとき、各におけるの値を求めます。
タップして手順をさらに表示してください…
ステップ 4.1
での値を求めます。
タップして手順をさらに表示してください…
ステップ 4.1.1
に代入します。
ステップ 4.1.2
簡約します。
タップして手順をさらに表示してください…
ステップ 4.1.2.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 4.1.2.1.1
で因数分解します。
ステップ 4.1.2.1.2
共通因数を約分します。
ステップ 4.1.2.1.3
式を書き換えます。
ステップ 4.1.2.2
の厳密値はです。
ステップ 4.2
での値を求めます。
タップして手順をさらに表示してください…
ステップ 4.2.1
に代入します。
ステップ 4.2.2
簡約します。
タップして手順をさらに表示してください…
ステップ 4.2.2.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 4.2.2.1.1
で因数分解します。
ステップ 4.2.2.1.2
共通因数を約分します。
ステップ 4.2.2.1.3
式を書き換えます。
ステップ 4.2.2.2
第一象限で等しい三角の値を持つ角度を求め、参照角を当てはめます。正弦は第四象限で負であるため、式を負にします。
ステップ 4.2.2.3
の厳密値はです。
ステップ 4.2.2.4
をかけます。
ステップ 4.3
点のすべてを一覧にします。
、任意の整数
、任意の整数
ステップ 5