問題を入力...
微分積分 例
ステップ 1
ステップ 1.1
一次導関数を求めます。
ステップ 1.1.1
総和則では、のに関する積分はです。
ステップ 1.1.2
の値を求めます。
ステップ 1.1.2.1
はに対して定数なので、に対するの微分係数はです。
ステップ 1.1.2.2
のとき、はであるというべき乗則を使って微分します。
ステップ 1.1.2.3
とをまとめます。
ステップ 1.1.2.4
とをまとめます。
ステップ 1.1.2.5
の共通因数を約分します。
ステップ 1.1.2.5.1
共通因数を約分します。
ステップ 1.1.2.5.2
をで割ります。
ステップ 1.1.3
の値を求めます。
ステップ 1.1.3.1
はに対して定数なので、に対するの微分係数はです。
ステップ 1.1.3.2
のとき、はであるというべき乗則を使って微分します。
ステップ 1.1.3.3
にをかけます。
ステップ 1.1.3.4
とをまとめます。
ステップ 1.1.3.5
とをまとめます。
ステップ 1.1.3.6
との共通因数を約分します。
ステップ 1.1.3.6.1
をで因数分解します。
ステップ 1.1.3.6.2
共通因数を約分します。
ステップ 1.1.3.6.2.1
をで因数分解します。
ステップ 1.1.3.6.2.2
共通因数を約分します。
ステップ 1.1.3.6.2.3
式を書き換えます。
ステップ 1.1.3.6.2.4
をで割ります。
ステップ 1.2
に関するの一次導関数はです。
ステップ 2
ステップ 2.1
一次導関数をに等しくします。
ステップ 2.2
をで因数分解します。
ステップ 2.2.1
をで因数分解します。
ステップ 2.2.2
をで因数分解します。
ステップ 2.2.3
をで因数分解します。
ステップ 2.3
方程式の左辺の個々の因数がと等しいならば、式全体はと等しくなります。
ステップ 2.4
がに等しいとします。
ステップ 2.5
をに等しくし、を解きます。
ステップ 2.5.1
がに等しいとします。
ステップ 2.5.2
方程式の両辺にを足します。
ステップ 2.6
最終解はを真にするすべての値です。
ステップ 3
微分係数がに等しくなるような値はです。
ステップ 4
微分係数または未定義になる値の周囲で、を分離区間に分割します。
ステップ 5
ステップ 5.1
式の変数をで置換えます。
ステップ 5.2
結果を簡約します。
ステップ 5.2.1
各項を簡約します。
ステップ 5.2.1.1
を乗します。
ステップ 5.2.1.2
にをかけます。
ステップ 5.2.2
とをたし算します。
ステップ 5.2.3
最終的な答えはです。
ステップ 5.3
で微分係数はです。これは正の値なので、関数はで増加します。
なのでで増加
なのでで増加
ステップ 6
ステップ 6.1
式の変数をで置換えます。
ステップ 6.2
結果を簡約します。
ステップ 6.2.1
各項を簡約します。
ステップ 6.2.1.1
積の法則をに当てはめます。
ステップ 6.2.1.2
1のすべての数の累乗は1です。
ステップ 6.2.1.3
を乗します。
ステップ 6.2.2
を公分母のある分数として書くために、を掛けます。
ステップ 6.2.3
の適した因数を掛けて、各式をを公分母とする式で書きます。
ステップ 6.2.3.1
にをかけます。
ステップ 6.2.3.2
にをかけます。
ステップ 6.2.4
公分母の分子をまとめます。
ステップ 6.2.5
からを引きます。
ステップ 6.2.6
分数の前に負数を移動させます。
ステップ 6.2.7
最終的な答えはです。
ステップ 6.3
で微分係数はです。これは負の値なので、関数はで減少します。
なのでで減少
なのでで減少
ステップ 7
ステップ 7.1
式の変数をで置換えます。
ステップ 7.2
結果を簡約します。
ステップ 7.2.1
各項を簡約します。
ステップ 7.2.1.1
を乗します。
ステップ 7.2.1.2
にをかけます。
ステップ 7.2.2
からを引きます。
ステップ 7.2.3
最終的な答えはです。
ステップ 7.3
で微分係数はです。これは正の値なので、関数はで増加します。
なのでで増加
なのでで増加
ステップ 8
関数が増加する区間と減少する区間を記載します。
で増加
で減少
ステップ 9