微分積分 例

グラフ化する f(x)=|2x+4|
ステップ 1
頂点の絶対値を求めます。このとき、の頂点はです。
タップして手順をさらに表示してください…
ステップ 1.1
交点の座標を求めるために、絶対値の内側をと等しくします。この場合、です。
ステップ 1.2
方程式を解き、絶対値の頂点の座標を求めます。
タップして手順をさらに表示してください…
ステップ 1.2.1
方程式の両辺からを引きます。
ステップ 1.2.2
の各項をで割り、簡約します。
タップして手順をさらに表示してください…
ステップ 1.2.2.1
の各項をで割ります。
ステップ 1.2.2.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 1.2.2.2.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 1.2.2.2.1.1
共通因数を約分します。
ステップ 1.2.2.2.1.2
で割ります。
ステップ 1.2.2.3
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 1.2.2.3.1
で割ります。
ステップ 1.3
式の変数で置換えます。
ステップ 1.4
を簡約します。
タップして手順をさらに表示してください…
ステップ 1.4.1
をかけます。
ステップ 1.4.2
をたし算します。
ステップ 1.4.3
絶対値は数と0の間の距離です。の間の距離はです。
ステップ 1.5
絶対値の上界はです。
ステップ 2
式の定義域は、式が未定義の場合を除き、すべての実数です。この場合、式が未定義になるような実数はありません。
区間記号:
集合の内包的記法:
ステップ 3
値について値が1つあります。定義域から値をいくつか選択します。頂点の絶対値の値周辺にあるように値を選択するとより便利になるでしょう。
タップして手順をさらに表示してください…
ステップ 3.1
値のに代入します。この場合、点はです。
タップして手順をさらに表示してください…
ステップ 3.1.1
式の変数で置換えます。
ステップ 3.1.2
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 3.1.2.1
をかけます。
ステップ 3.1.2.2
をたし算します。
ステップ 3.1.2.3
絶対値は数と0の間の距離です。の間の距離はです。
ステップ 3.1.2.4
最終的な答えはです。
ステップ 3.2
値のに代入します。この場合、点はです。
タップして手順をさらに表示してください…
ステップ 3.2.1
式の変数で置換えます。
ステップ 3.2.2
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.2.1
をかけます。
ステップ 3.2.2.2
をたし算します。
ステップ 3.2.2.3
絶対値は数と0の間の距離です。の間の距離はです。
ステップ 3.2.2.4
最終的な答えはです。
ステップ 3.3
値のに代入します。この場合、点はです。
タップして手順をさらに表示してください…
ステップ 3.3.1
式の変数で置換えます。
ステップ 3.3.2
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 3.3.2.1
をかけます。
ステップ 3.3.2.2
をたし算します。
ステップ 3.3.2.3
絶対値は数と0の間の距離です。の間の距離はです。
ステップ 3.3.2.4
最終的な答えはです。
ステップ 3.4
絶対値は、頂点の周りの点を利用してグラフにすることができます
ステップ 4