微分積分 例

極大値と極小値を求める f(x)=(x+3)/(x-3)
ステップ 1
関数の一次導関数を求めます。
タップして手順をさらに表示してください…
ステップ 1.1
およびのとき、であるという商の法則を使って微分します。
ステップ 1.2
微分します。
タップして手順をさらに表示してください…
ステップ 1.2.1
総和則では、に関する積分はです。
ステップ 1.2.2
のとき、であるというべき乗則を使って微分します。
ステップ 1.2.3
について定数なので、についての微分係数はです。
ステップ 1.2.4
式を簡約します。
タップして手順をさらに表示してください…
ステップ 1.2.4.1
をたし算します。
ステップ 1.2.4.2
をかけます。
ステップ 1.2.5
総和則では、に関する積分はです。
ステップ 1.2.6
のとき、であるというべき乗則を使って微分します。
ステップ 1.2.7
について定数なので、についての微分係数はです。
ステップ 1.2.8
式を簡約します。
タップして手順をさらに表示してください…
ステップ 1.2.8.1
をたし算します。
ステップ 1.2.8.2
をかけます。
ステップ 1.3
簡約します。
タップして手順をさらに表示してください…
ステップ 1.3.1
分配則を当てはめます。
ステップ 1.3.2
分子を簡約します。
タップして手順をさらに表示してください…
ステップ 1.3.2.1
の反対側の項を組み合わせます。
タップして手順をさらに表示してください…
ステップ 1.3.2.1.1
からを引きます。
ステップ 1.3.2.1.2
からを引きます。
ステップ 1.3.2.2
をかけます。
ステップ 1.3.2.3
からを引きます。
ステップ 1.3.3
分数の前に負数を移動させます。
ステップ 2
関数の二次導関数を求めます。
タップして手順をさらに表示してください…
ステップ 2.1
定数倍の公式を使って微分します。
タップして手順をさらに表示してください…
ステップ 2.1.1
に対して定数なので、に対するの微分係数はです。
ステップ 2.1.2
指数の基本法則を当てはめます。
タップして手順をさらに表示してください…
ステップ 2.1.2.1
に書き換えます。
ステップ 2.1.2.2
の指数を掛けます。
タップして手順をさらに表示してください…
ステップ 2.1.2.2.1
べき乗則を当てはめて、指数をかけ算します。
ステップ 2.1.2.2.2
をかけます。
ステップ 2.2
およびのとき、であるという連鎖律を使って微分します。
タップして手順をさらに表示してください…
ステップ 2.2.1
連鎖律を当てはめるために、とします。
ステップ 2.2.2
のとき、であるというべき乗則を使って微分します。
ステップ 2.2.3
のすべての発生をで置き換えます。
ステップ 2.3
微分します。
タップして手順をさらに表示してください…
ステップ 2.3.1
をかけます。
ステップ 2.3.2
総和則では、に関する積分はです。
ステップ 2.3.3
のとき、であるというべき乗則を使って微分します。
ステップ 2.3.4
について定数なので、についての微分係数はです。
ステップ 2.3.5
式を簡約します。
タップして手順をさらに表示してください…
ステップ 2.3.5.1
をたし算します。
ステップ 2.3.5.2
をかけます。
ステップ 2.4
簡約します。
タップして手順をさらに表示してください…
ステップ 2.4.1
負の指数法則を利用して式を書き換えます。
ステップ 2.4.2
をまとめます。
ステップ 3
微分係数をと等しくし、式を解いて関数の極大値と最小値を求めます。
ステップ 4
一次導関数がに等しくなるの値がないので、極値はありません。
極値がありません
ステップ 5
極値がありません
ステップ 6