問題を入力...
微分積分 例
ステップ 1
ステップ 1.1
余弦が連続なので、極限を三角関数の中に移動させます。
ステップ 1.2
がに近づいたら、極限で極限の法則の和を利用して分解します。
ステップ 1.3
がに近づくと定数であるの極限値を求めます。
ステップ 2
をに代入し、の極限値を求めます。
ステップ 3
ステップ 3.1
を積として書き換えます。
ステップ 3.2
を分母をもつ分数で書きます。
ステップ 3.3
簡約します。
ステップ 3.3.1
をで割ります。
ステップ 3.3.2
にをかけます。
ステップ 3.3.3
をに変換します。
ステップ 3.4
からを引きます。
ステップ 3.5
の値を求めます。