問題を入力...
微分積分 例
ステップ 1
ステップ 1.1
完全平方式を利用して因数分解します。
ステップ 1.1.1
をに書き換えます。
ステップ 1.1.2
中間項が、第1項と第3項で2乗される数の積の2倍であることを確認します。
ステップ 1.1.3
多項式を書き換えます。
ステップ 1.1.4
とならば、完全平方3項式を利用して因数分解します。
ステップ 1.2
たすき掛けを利用してを因数分解します。
ステップ 1.2.1
の形式を考えます。積がで和がである整数の組を求めます。このとき、その積がで、その和がです。
ステップ 1.2.2
この整数を利用して因数分解の形を書きます。
ステップ 2
ステップ 2.1
にをかけます。
ステップ 2.2
にをかけます。
ステップ 2.3
にをかけます。
ステップ 2.4
にをかけます。
ステップ 2.5
にをかけます。
ステップ 2.6
にをかけます。
ステップ 2.7
の因数を並べ替えます。
ステップ 2.8
を乗します。
ステップ 2.9
を乗します。
ステップ 2.10
べき乗則を利用して指数を組み合わせます。
ステップ 2.11
とをたし算します。
ステップ 3
公分母の分子をまとめます。
ステップ 4
ステップ 4.1
分配則を当てはめます。
ステップ 4.2
指数を足してにを掛けます。
ステップ 4.2.1
を移動させます。
ステップ 4.2.2
にをかけます。
ステップ 4.3
にをかけます。
ステップ 4.4
をに書き換えます。
ステップ 4.5
分配法則(FOIL法)を使ってを展開します。
ステップ 4.5.1
分配則を当てはめます。
ステップ 4.5.2
分配則を当てはめます。
ステップ 4.5.3
分配則を当てはめます。
ステップ 4.6
簡約し、同類項をまとめます。
ステップ 4.6.1
各項を簡約します。
ステップ 4.6.1.1
にをかけます。
ステップ 4.6.1.2
をの左に移動させます。
ステップ 4.6.1.3
にをかけます。
ステップ 4.6.2
からを引きます。
ステップ 4.7
分配則を当てはめます。
ステップ 4.8
簡約します。
ステップ 4.8.1
にをかけます。
ステップ 4.8.2
にをかけます。
ステップ 4.9
分配則を当てはめます。
ステップ 4.10
にをかけます。
ステップ 5
ステップ 5.1
からを引きます。
ステップ 5.2
とをたし算します。
ステップ 5.3
の反対側の項を組み合わせます。
ステップ 5.3.1
からを引きます。
ステップ 5.3.2
とをたし算します。
ステップ 5.4
とをたし算します。